簡易檢索 / 詳目顯示

研究生: 蘇科化
Su, Ke-hua
論文名稱: 新型微量氮砷化銦鎵、銻氮砷化銦鎵與銻砷化銦鎵通道異質結構場效電晶體之研製
Investigations of New Dilute InGaAsN, InGaAsNSb and InGaAsSb Channel Heterostructure Field-Effect Transistors
指導教授: 李景松
Lee, Ching-sung
許渭州
Hsu, Wei-chou
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 97
中文關鍵詞: 銻砷化銦鎵銻氮砷化銦鎵氮砷化銦鎵
外文關鍵詞: InGaAsN, InGaAsNSb, InGaAsSb
相關次數: 點閱:297下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們成功的研製一系列以砷化鎵為基板其通道分別摻雜微量氮及銻化物的異質結構電晶體。藉由氮化物及銻化物組成的通道,完整的探討其對元件特性的影響,例如:源極電流、崩潰電壓、轉導值、閘極電壓擺幅、熱穩定度及高頻等特性。
    首先我們將使用分子束磊晶系統成長氮砷化銦鎵(InGaAsN)材料為通道層應用在異質結構電晶體中,藉由在砷化銦鎵的通道中加入氮元素與傳統的砷化銦鎵通道相比可以有效地減少能隙。此元件使用新穎且低能隙的微量氮砷化銦鎵通道層透過改善通道中的載子侷限能力使其具有改善元件之直流特性及增加熱穩定度的功效。
    雖然在砷化銦鎵的材料中加入微量氮元素可以使其能隙下降,然而四元氮砷化銦鎵材料卻必須在低溫下成長。但低溫下成長的磊晶過程其磊晶品質的下降導致對電子元件應用方面的載子傳輸能力降低。所以我們研製使用分子束磊晶成長微量銻的銻砷化銦鎵通道的異質結構電晶體。和低溫成長的氮砷化銦鎵通道結構相比,摻雜銻類似活化劑的銻元素可以有效的改善氮砷化銦鎵與砷化鎵異質接面的磊晶品質所以進而改善其載子的傳輸特性。直流特性的增進,元件高溫特性的改善和優異熱穩定性都成功的於以微量銻的銻砷化銦鎵通道異質結構電晶體設計中獲得。
    近來某些團體致力於使用銻元素當做表面活化劑應用在砷化鎵/銻氮砷化銦鎵量子井雷射中去改善其結晶的品質,將銻元素加入元件的優點不僅可以改善其臨界電流密度而且可以減少能隙在光學上有紅移的現象,除此之外,基於我們對於研製氮砷化銦鎵和銻氮砷化銦鎵通道的結構,我們發現加入銻元素後不僅可以提供類似活化劑功能平滑其異質結構的表面,而且加入砷化銦鎵通道中可以減少能隙。這兩個特性皆可以改善電子元件的傳輸特性,亦可以使元件可以在高頻率方面的應用。有鑒於此我們成長了以銻砷化銦鎵為通道層的高電子移動場效電晶體。一方面抦除了氮元素所造成電子移動率降低的問題,另一方面加入銻化物當活化劑亦可進一步的改善砷化銦鎵道通層的磊晶品質,以期元件有更高的操作頻率及元件特性。由實驗結果顯示通道層有摻雜銻元素之元件在單一電流增益截止頻率及最大振盪頻率各比無摻雜銻之元件提升了21%及10.5%。
    最後為了配合元件於MMIC應用下所需的高溫下的高線性度特性,我們研製以銻砷化銦鎵摻雜式通道層的異質結構場效電晶體,使用摻雜式通道層與銻的加入除了提高磊晶品質也伴隨了能隙的下降,使得通道層可以增加載子的侷限能力,因此我們對其做溫度變化的測試,由實驗結果顯示,以摻雜式銻砷化銦鎵通道層之結構具有良好的熱穩定性,當溫度從300K變化至450K時,源極電流下降4.3%、轉導值下降12%、臨界電壓則僅變動5.16 %。
    這篇論文已經成功的研製以氮砷化銦鎵,銻氮砷化銦鎵和銻砷化銦鎵等通道砷化鎵基礎的異質結構電晶體和摻雜式通道異質結構電晶體。藉由一步步的探討其微量元素的通道工程,所研製的元件表現出優異的元件特性與熱穩定度的改善。使用不同的電學,光學和材料方面的特性分析去証實元件的設計。此篇論文所研製的異質結構電晶體對於應用在MMIC的應用上是具有潛力的元件。

    We have successfully fabricated and investigated GaAs-based heterostructure field-effect transistors (HFETs) with dilute InGaAsN/InGaAsNSb/InGaAsSb channel layers, respectively. Through proposed the dilute N and Sb channel engineering, the influences on device performances, such as drain current, breakdown, extrinsic transconductances, gate-voltage swing, thermal stability, and high-frequency characteristics, have been comprehensively investigated.
    First, we have investigated the device characteristics of the HFET structure with a dilute InGaAsN channel layer, grown by the molecular beam epitaxy (MBE) system. By integrating N atoms into the InGaAs channel can effectively decrease the effective energy bandgap as compared to conventional InGaAs channels. The present device exhibits improved DC characteristics and thermal stability due to the enhanced channel confinement capability by using a novel, low-gap and dilute InGaAsN channel.
    Although the energy bandgap can be reduced in the dilute InGaAsN channel, the InGaAsN material must be growth in low temperatures. Consequently, the resulted poor crystalline quality tends to degrade the carrier transport for the electronic device applications. Therefore, we’ve further presented an HFET design using a dilute antimony InGaAsN(Sb) channel grown by MBE system. The incorporation of surfactant-like Sb atoms can effectively improve the interfacial quality of InGaAsN/GaAs heterostructure, and thus improve the carrier transport characteristics, as compared to the low-temperature grown InGaAsN channel structure. Enhanced DC characteristics, improved high-temperature device performance, and superior thermal stability have been successfully achieved in the dilute InGaAsN(Sb) channel HFET design.
    Recently, some efforts have been devoted to using Sb atoms as surfactants in the GaAs/InGaAsNSb QW laser to improve the crystal quality. The advantages of incorporating Sb atoms into the optoelectronic devices can not only improve the threshold current densities but also reduce the energy bandgap and red-shift the light emission. Besides, based on our learning from the investigations of HFET designs with dilute InGaAsN and InGaAsNSb channel structures, respectively, we found that the incorporation of Sb atoms can not only serve as surfactants to smooth out the heterointerface and, but can also decrease the effective bandgap from the InGaAs channel. Both influences are beneficial to the improvement of the electron transport property, and thus facilitate the device operations in high-frequency applications. Therefore, we have further devised the HFET structure using a dilute antimony In0.2Ga0.8AsSb channel to improve the interfacial quality, carrier transport properties, and the channel confinement capability at the same time. Compared with conventional InGaAs-channel devices, the proposed InGaAsSb/GaAs HFET device has demonstrated significant improvement of about 25% in the maximum extrinsic transconductance, 12.3% in the drain current density, 21% in the unity-current-gain cut-off frequency, and 10.5% in the maximum oscillation frequency.
    Finally, in order to serve the needs for high-temperature with superior linearity millimeter-wave integrated circuit (MMIC) applications, we have further designed a dilute In0.2Ga0.8AsSb antimony-doped-channel HFET structure, grown by the MBE system, to improve the interfacial quality and the thermal stability at the same time. At 450 K, we’ve observed only 4.3% decrease for the drain current densities, 12% decrease for the extrinsic transconductance, and only 5.16% variation for the threshold voltage, as compared to its room-temperature characteristics.
    In summary, this dissertation has successfully investigated GaAs-based HFET and doped-channel HFET designs with dilute InGaAsN, InGaAsNSb, and InGaAsSb channels, respectively. Upon the step-by-step investigations on the dilute channel engineering, the present devices have exhibited superior device performance with improved thermal stability. Various electrical, optical, and material characterizations have also been performed to verify the device designs. The devised HFET devices in this dissertation can be promisingly applied to MMIC applications.

    Contents Abstract (in Chinese) I Abstract (in English) III Contents VI Table Captions VIII Figure Captions IX Chapter 1 Introduction 1 Chapter 2 In0.3Ga0.7As0.99N0.01 Channel HFET 5 2-1 Introduction 5 2-2 Device Structure and Fabrication 7 2-3 Experimental Results and Discussions 8 2-4 Summary 14 Chapter 3 In0.3Ga0.7As0.99N0.01(Sb) Channel HFET 16 3-1 Introduction 16 3-2 Device Structure and Fabrication 16 3-3 Experimental Results and Discussions 18 3-4 Summary 22 Chapter 4 In0.2Ga0.8AsSb/GaAs Channel HEMT 23 4-1 Introduction 23 4-2 Device Structure and Fabrication 23 4-3 Experimental Results and Discussions 25 4-4 Summary 29 Chapter 5 In0.2Ga0.8AsSb/GaAs Doped-Channel FET 30 5-1 Introduction 30 5-2 Device Structure and Fabrication 30 5-3 Experimental Results and Discussions 32 5-4 Summary 37 Chapter 6 Conclusions and Prospects 39 6-1 Conclusions 39 6-2 Future work 41 References 42 Figures 52 Publication List 94

    [1] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron mobilities in modulation-doped semiconductor heterojuncyion superlattices,” Appl. Phys. Lett. , vol. 33, p. 665, 1978.
    [2] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modelation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Devices, vol. 42, p. 804, 1995.
    [3] K. H. Su, W. C. Hsu, C. S. Lee, I. L. Chen, Y. J. Chen and C. L. Wu” Comparative Studies of d-Doped In0.45Al0.55As/In0.53Ga0.47As/GaAs Metamorphic high-electron-mobility transistors with Au, Ti/Au, Ni/Au, and Pt/Au Gate,” Journal of the Electrochemical Society, vol. 153(11), p. G996, 2006
    [4] K. H. Su, W. C. Hsu, P. J. Hu, Y. J. Chen, C. S. Lee, Y. S. Lin and C. L. Wu” An Improved symmetrically-graded doped-channel heterostructure field-effect transistor” J. Korean Phys. Soc. Vol. 50 p. 1878, 2007
    [5] C. Nguyen, and M. Micovic, “The state-of-the-art of GaAs and InP power devices and amplifiers,” IEEE Trans. Electron. Devices, vol. 48, p. 472, 2001.
    [6] L. D. Nguyen, A.S. Brown, M. A. Thompson, and L. M. Jelloian, “50 nm self-aligned gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron. Devices, vol. 39, p. 2007, 1992.
    [7] H. S. Yoon, J. H. Lee, J. Y. Shim, S.J. Kim, D. M. Kang, J. Y. Hong, W. J. Chang, and K. H. Lee, “Low noise characteristics of double-doped In0.52Al0.48As/ In0.53Ga0.47As power metamorphic HEMT on GaAs substrate with wide head T-Shaped gate,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 201, 2002.
    [8] P. C. Chao, A. Tessmer, K. H. G. Duh, M. Y. Kao, P. Ho, P. M. Smith, J. M. Ballingall, S. M. Liu, and A. A. Jabra, “W-band low-noise InAlAs/InGaAs lattice matched HEMT’s,” IEEE Electron Device Lett., vol. 11, p. 59, 1990.
    [9] Y. C. Chen, D. L. Ingram, R. Lai, M. Barsky, R. Grunbacher, T. Block, H. C. Yen, and D. C. Streit, “A 95-GHz InP HEMT MMIC amplifier with 427-mW power output,” IEEE Microwave Guide. Wave Lett., vol. 8, p. 399, 1998.
    [10] T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, ”30-nm two-step recess gate InP-based InAlAs/InGaAs HEMTs,” IEEE Trans. Electron. Devices, vol. 49, p. 1694, 2002.
    [11] A. Mahajan, M. Arafa, P. Fey, C. Caneau, and I. Adesida, “0.3 µm gate length enhancement-mode AlInAs/InGaAs/InP high-electron mobility transistor,” IEEE Electron Device Lett., vol. 18, p. 284, 1997.
    [12] J. B. Shealy, M. Matloubian, T. Y. Liu, W. Lam, and C. Ngo, “0.9W/mm, 76% P.A.E. (7GHz) GaInAs/InP Composite Channel HEMTs,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 201, 1997.
    [13] J. I. Chyi, J. L. Shieh, J. W. Pan, and R. M. Lin, “Material properties of compositional graded InxGa1-xAs and InxAl1-xAs epilayers grown on GaAs substrates,” J. Appl. Phys., vol. 79, p. 8367, 1996.
    [14] Y. Cordier, and D. Ferre, “InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps,” J. Cryst. Growth, vol. 201/202, p. 263, 1999.
    [15] S. I. Gozu, K. Tsuboki, M. Hayashi, C. Hong, and S. Yamada, “Very high electron mobilities at low temperatures in InxGa1-xAs/InyAl1-yAs HEMTs grown lattice-mismatched on a GaAs substrates,” J. Cryst. Growth, vol. 201/202, p. 749, 1999.
    [16] M. Kawano, T. Kuzuhara, H. Kawasaki, F. Sasaki, and H. Tokuda, “InAlAs/ InGaAs metamorphic low-noise HEMT,” IEEE Microwave Guide. Wave Lett., vol. 7, p. 6, 1997.
    [17] M. Chertouk, H. Heiss, D. Xu, S. Kraus, W. Klein, G. Böhm, G. Tränkle, and G. Weimann, “Metamorphic InAlAs/InGaAs HEMT’s on GaAs substrates with a novel composite channel design,” IEEE Electron Device Lett., vol. 17, p. 273, 1996.
    [18] S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet, and A. Cappy, “Metamorphic In0.4Al0.6As/In0.4Ga0.6As HEMT’s on GaAs substrate,” IEEE Electron Device Lett., vol. 20, p. 123, 1999.
    [19] Y. Cordier, S. Bollaert, M. Zaknoune, J. diPersio, and D. Ferre, “AlInAs/GaInAs metamorphic HEMT’s on GaAs substrate: from material to device,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 211, 1998.
    [20] S. Bollaert, Y. Corider, M. Zaknoune, T. Parenty, H. Happy, S. Lepilliet, and A. Cappy, “fmax of 490 GHz metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate,” Electron. Lett., vol. 38, p. 389, 2002.
    [21] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Corider, Y. Druelle, D. Théron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett., vol. 19, p. 345, 1999.
    [22] A. S. Wakita, H. Rohdin, V. M. Robbins, N. Moll, C. Y. Su, A. Nagy, and D. P. Basile, “Low-noise bias reliability of AlInAs/GaInAs MODFETs with linearly graded low-temperature buffer layers grown on GaAs substrates,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 223, 1998.
    [23] M. H. Somerville, A. Ernst, and J. A. Del Alamo, “A physical model for kink effect in InAlAs/InGaAs HEMT’s,” IEEE Trans. Electron. Devices, vol. 47, p. 922, 2000
    [24] J. del Alamo, and M. Somerville, “Breakdown in millimeter-wave power InP HEMTs: a comparison with GaAs PHEMTs,” IEEE J. Solid State Circuits, vol. 34, p. 1204, 1999.
    [25] J. W. Matthews, A. E. Blakeslee, “Defects in epitaxial multi-layers. I. misfit dislocations,” J. Cryst. Growth, vol. 27, p. 118, 1974.
    [26] J. H. Kim, H. S. Yoon, J. H. Lee, W. J. Chang, J. Y. Shim, K. H. Lee, and J. I. Song, “Low-frequency noise characteristics of metamorphic In0.52Al0.48As/ In0.6Ga0.4As double-heterostructure pseudomorphic high electron mobility transistors grown on a GaAs substrate,” Solid-State Electronic., vol. 46, p.69, 2002.
    [27] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, ”Band anticrossing in GaInNAs alloys,“ Phys. Rev. Lett. vol. 82, p. 1221, 1999.
    [28] K. Kim and A. Zunger, ” Spatial correlations in GaInAsN Alloys and their effects on Band-Gap enhancement and electron localization,” Phys. Rev. Lett. vol. 86, p. 2609, 2001.
    [29] M. Kondow, S. A. Nakatsuka, T. Kitatani, Y. Yazawa, and M. Oh, “Room temperature pulsed operation of GaInNAs laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys., Part I, vol. 35, p. 5711, 1996.
    [30] M. Kondow, K. Uomi, K. Hosomi, and T. Mozume, “Gas-source molecular beam epitaxy of GaNAs using a N radical as the N source,” Jpn. J. Appl. Phys., vol. 33, p. L1056, 1994.
    [31] M. Sato and M. Weyers, “GaAsN Alloys: Growth and optical properties,” presented at the 19th Int. Symp. GaAs and Related Compound Semiconductors, Karuizawa, Japan, 1992; also in Inst. Phys. Conf. Ser. Philadelphia, PA: Inst. of Physics, Ltd., vol. 129, p. 555, 1993
    [32] N. Ohkouchi, S. Miyoshi, H. Yaguchi, K. Onabe, Y. Shiraki, and R. Ito, “MOVPE growth of GaAsN alloys,” in 12th Alloy Semiconductor Physics and Electronics Symp., Izu-Nagaoka, Japan, p. 337, 1993.
    [33] S. Sakai, Y. Ueta, and Y. Terauchi, “Band gap energy and band lineup of III–V alloy semiconductors incorporating nitrogen and boron,” Jpn. J. Appl. Phys., vol. 32, p. 4413, 1993.
    [34] J. C. Phillips, Bonds and Bands in Semiconductors. New York: Academic, p.
    54, 1973.
    [35] K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 µm,” Electron. Lett., vol. 36, p. 1388, 2000.
    [36] G. Steinle, F. Medere, M. Kicherer, R. Michalzik, G. Kristen, A. Y. Egorov, H. Riechert, H. D. Wolf, and K. J. Ebeling, “Data transmission up to 10 Gbit/s with 1.3 µm wavelength InGaAsN VCSELs,” Electron. Lett., vol. 37, p. 632, 2001.
    [37] R. S. Hsiao, J. S. Wang, K. F. Lin, L. Wei, H. Y. Liu, C. Y. Liang, C. M. Lai, A. R. Kovsh, N. A. Maleev, J. Y Chi and J. F. Chen, “Single mode 1.3 µm InGaAsN/GaAs quantum well vertical cavity surface emitting lasers grown by molecular beam epitaxy,” Jpn. J. Appl. Phys., vol. 43, p. L1555, 2004.
    [38] P. C. Chang, A. G. Baca, N. Y. Li, X. Xie, H. Q. Hou, and E. Armour, “InGaP/InGaAsN/GaAs NpN double heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 76, p. 2262, 2000.
    [39] P. C. Chang, N. Y. Li, C. Monier, A. G. Baca, J. R. LaRoche, H. Q. Hou, F. Ren, and S. J. Pearton, “Device characteristics of the GaAs/In-GaAsN/GaAs PnP double heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 22, p. 113, 2001.
    [40] C. Monier, A. G. Baca, P. C. Chang, N. Li, H. Q. Hou, F. Ren, and S. J. Pearton, “Pnp InGaAsN-based HBT with graded base doping,” Electron. Lett., vol. 37, p. 198, 2001.
    [41] J. S. Wang, A. R. Kovsh, R. S. Hsiao, L. P. Chen, J. F. Chen, T. S. Lay and J. Y. Chi, ”High nitrogen content InGaAsN/GaAs single quantum well for 1.55μm applications grown by molecular beam epitaxy,” J. Cryst. Growth, vol. 262, p. 84, 2004.
    [42] A. R. Kovsh, J. S. wang, L. Wei, R. S. Shiao, J. Y. Chi, B. V. Volovik, A. F. Tsatsul’nikov and V. M. Ustinov, ” Molecular beam epitaxy growth of GaAsN layers with high luminescence efficiency,” J. Vac. Sci. & Technol. B, vol. 20, p 1158, 2002.
    [43] S. Niki, C. L. Lin, W. S. C. Chang, and H. H. Wieder, ”Band-edge discontinuities of strained-layer InxGa1–xAs/GaAs heterojunctions and quantum wells,” Appl. Phys. Lett. Vol. 55, p. 1339, 1989.
    [44] H. Carrère, X. Marie, J. Barrau, and T. Amand, ”Comparison of the optical gain of InGaAsN quantum-well lasers with GaAs or GaAsP barriers,” Appl. Phys. Lett. Vol. 86, p. 071116-1, 2005.
    [45] H. P. Xina and C. W. Tu, “GaInNAs/GaAs multiple quantum wells grown by gas-source molecular beam epitaxy,” Appl. Phys. Lett. Vol. 72, p. 2442, 1998.
    [46] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, C. C. Cheng, K. P. Lin, C. H. Yen, and C. Z. Wu, “Improved n+-GaAs/p+-In0.49Ga0.51P/n-GaAs camel-like gate structure for high-breakdown, low-leakage, and high-temperature applications,” Appl. Phys. Lett., vol. 79, p. 967, 2001.
    [47] K. H. Yu, K. W. Lin, K. P. Lin, C. H. Yen, C. K. Wang, and W. C Liu, “Study of InGaP/GaAs/InGaAs high-barrier gate and heterostructure-channel field-effect transistors,” J. Vac. Sci. Technol. B, vol. 20, p.1096, 2002.
    [48] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, K. B. Thei, ”Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET,” IEEE Trans. Electron Devices, vol. 48, p. 2677, 2001.
    [49] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, ”Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, p. 274, 1999.
    [50] S. M. Sze “Semiconductor devices physics and technology,” 2nd Edition p.36
    [51] S. J. Yu, W. C. Hsu, Y. J. Li and Y. J. Chen, ”Improved step-graded-channel heterostructure field-effect transistor,” Jpn. J. Appl. Phys., vol. 43, p. 5942, 2004.
    [52] H. C. Chiu, S. C. Yang, F. T. Chien, and Y. J. Chan, “Improved device linearity of AlGaAs/InGaAs HFETs by a second mesa etching,” IEEE Electron Device Lett., vol. 23, p. 1, 2002.
    [53] P. H. Lai, H. M. Chuang, S. F. Tsai, C. I. Kao, H. R. Chen, C. Y. Chen and W. C. Liu, “Characteristics of a new camel-gate filed effect transistor (CAMFET) with a composite channel structure,” Semicond. Sci. Technol., vol. 19, p.912, 2004.
    [54] J. Y. Duboz, J. A. Gupta, M. Byloss, G. C. Aers, H. C. Liu, and Z. R. Wasilewski, “Intersubband transitions in InGaNAs/GaAs quantum wells,” Appl. Phys. Lett., vol. 81, p. 1836, 2002.
    [55] Z. Pan, L. H. Li, Y. W. Lin, B. Q. Sun, and D. S. Jiang, “Conduction band offset and electron effective mass in GaInNAs/GaAs quantum-well structures with low nitrogen concentration,” Appl. Phys. Lett., vol. 78, p. 2217, 2001.
    [56] Y. J. Li, W. C. Hsu, and S. Y. Wang, “Temperature-dependent characteristics of Al0.2Ga0.8As/In0.22Ga0.78As pseudomorphic double heterojunction modulation doped field-effect transistor with a GaAs/AlGaAs superlattice buffer layer,” J. Vac. Sci. Technol. B, vol. 21, p.760, 2003.
    [57] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. H. Yen, H. M. Chuang, S. Y. Cheng and W. C. Liu,” Thermal stability improvement of a sulfur-passivated InGaP/InGaAs/GaAs heterostructure field-effect transistor (HFET),”IEEE Trans. on Device and Materials Reliability, vol. 6, p. 52, 2006.
    [58] H. Shimizu, K. Kumada, S. Uchiyama and A. Kasukawa, “1.21μm range GalnAs SOW lasers using Sb as surfactant”, Electron. Lett., vol. 36, p. 1379, 2000.
    [59] X. Yang, J. B. Heroux, L. F. Mei, and W. I. Wang, “InGaAsNSb/GaAs quantum wells for 1.55 mm lasers grown by molecular-beam epitaxy”, Appl. Phys. Lett., vol. 78, p. 4068, 2001.
    [60] W. Ha, V. Gambin, M. Wistey, S. Bank, H. Yuen, S. Kim and J.S. Harris, Jr., “Long wavelength GaInNAsSb/GaNAsSb multiple quantum well lasers”, Electron. Lett., vol. 38, p. 277, 2002.
    [61] H. Shimizu, K. Kumada, S. Uchiyama, A. Kasukawa, “High-Performance CW 1.26-m GaInNAsSb–SQW Ridge Lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 7, p. 355, 2001
    [62] Y. K. Su, W. C. Chen, S. H. Hsu, J. D. Wu, S. J. Chang, R. W. Chuang, and W. R. Chen, Jpn. J. Appl. Phys., vol. 45, p. 3372, 2006.
    [63] X. Yang, M.J. Jurkovic, J.B. Heroux and W.I. Wang, “Low threshold InGaAsN/GaAs single quantum well lasers grown by molecular beam epitaxy using Sb surfactant”, Electron. Lett., vol. 35, p. 1082, 1999.
    [64] X. Yang, M. J. Jurkovic, J. B. Heroux, and W. I. Wang, “Molecular beam epitaxial growth of InGaAsN:Sb/GaAs quantum wells for long-wavelength semiconductor lasers”, Appl. Phys. Lett., vol. 76, p. 179, 1999.
    [65] M. Feng, D. R. Scherrer, P. J. Apostolakis, J. W. Kruse, “Temperature dependent study of the microwave performance of 0.25 μm gate GaAs MESFETs and GaAs pseudomorphic HEMTs,” IEEE Trans. Electron Devices, vol. 43, p. 852, 1996.
    [66] J. C. Liou, and K. M. Lau, “Temperature dependence and persistent conductivity of GaAs MESFET’s with superlattice Buffers,” IEEE Trans. Electron Devices, vol. 35, p. 14, 1988.
    [67] W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, Y. H. Wu, “On the improvement of gate voltage swings in δ-doped GaAs/InxGa1-xAs/GaAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices, vol. 40, p. 1630, 1993.
    [68] Y. J. Chan and M.. T. Yang, “Al0.3Ga 0.7AsInxGa1-xAs(0<x<0.25) doped-channel field-effect transistors (DCFET's),” IEEE Trans. Electron Devices, vol. 42, p. 1745, 1995.
    [69] W. S. Lour, W. C. Liu, J. H. Tasi, L. W. Laih and H. R. Chen, “Device linearity improvement and current enhancement utilizing high-to-low doping-channel FETs,” Superlat. Microstruct., vol. 20, p. 15, 1996.
    [70] H. C. Chiu, F. T. Chien, S. C. Yang, C. W. Kuo and Y. J. Chan “Reducing source and drain resistances in InGaP/lnGaAs doped-channel HFETs using delta-doping Schottky layer,” Electron. Lett., vol. 36, p. 1320, 2000.
    [71] K. H. Su, W. C. Hsu, C. S. Lee, P. J. Hu, R. S. Hsiao, J. F. Chen and T. W. Chi, “Highly Stable Thermal Characteristics of a Novel In0.3Ga0.7As0.99N0.01(Sb)/GaAs High-Electron-Mobility Transistor,” Jpn. J. Appl. Phys, vol. 46, p. 2344, 2007.
    [72] K. H. Su, W. C. Hsu, C. S. Lee, T. Y. Wu, Y. H. Wu, L. Chang, R. S. Hsiao, J. F. Chen and T. W. Chi “A novel dilute antimony channel In0.2Ga0.8AsSb/GaAs HEMT,” IEEE Electron Device Lett., vol. 28, p. 96, 2007.
    [73] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu and W. C. Liu “Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, vol. 50, p. 1717, 2003.

    下載圖示 校內:2009-07-21公開
    校外:2009-07-21公開
    QR CODE