簡易檢索 / 詳目顯示

研究生: 劉伃芝
Liu, Yu-Chih
論文名稱: 瀝青膠漿質流行為與轉爐石添加於 石膠泥瀝青混凝土之工程性質評估
Evaluation of Rheological Behavior of Asphalt Mastic and Engineering Properties of Basic Oxygen Furnace Slag as Aggregate in Stone Mastic Asphalt
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 128
中文關鍵詞: 石膠泥瀝青混凝土(SMA)轉爐石質流行為車轍
外文關鍵詞: Stone Mastic Asphalt (SMA), Basic Oxygen Furnace Slag (BOF), Rheological Behavior, Rutting
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石膠泥瀝青混凝土(Stone Mastic Asphalt,SMA)藉由粒料間互鎖作用以承受交通載重,再生資源利用為目前世界所關注的議題,轉爐石為煉鋼後副產品,轉爐石粒型方正且具有高抗壓強度,符合SMA對粒料的要求,因此本研究評估轉爐石添加於SMA之工程性質;此外,SMA中含有高比例膠漿,其為鋪面抗車轍及疲勞破壞之關鍵,因此須深入瞭解瀝青膠漿的質流行為、潛變行為及膠漿潛變行為與瀝青混凝土車轍行為之關係。
      本研究使用轉爐石全取代天然粗粒料並使用不同級配及瀝青,對馬歇爾穩定值、流度值及車轍輪跡試驗等工程性質進行評估。並用針入度85/100(Pen 85)、針入度60/70(Pen 60)及改質III型(MA)三種瀝青,使用動態剪切質流儀(Dynamic Shear Rheometer,DSR)於不同頻率與溫度條件下,評估瀝青膠漿質流行為,並探討膠漿於60℃的使用不同方式求得瀝青黏度之關係,進而探討膠漿之潛變行為與瀝青混凝土車轍績效之關係。
      研究結果顯示,添加轉爐石具有提高穩定值之功用,須注意轉爐石表面多孔性使瀝青混凝土中有效瀝青降低,導致V.M.A.降低。膠漿質流行為結果顯示,添加填充料可增加其勁度及彈性,降低改質瀝青之溫感性。改質瀝青之彈性回復能力較未改質瀝青佳,但改質瀝青膠漿之黏度較易受應力與剪應變率影響,改質瀝青使用Brookfield量測黏度時,需同時考慮剪應變率之影響。影響瀝青混凝土車轍績效主要為膠漿黏度與級配,其初始變形主要受膠漿黏度影響,之後整體永久變形則受到級配及膠漿影響。

    Stone Mastic Asphalt (SMA) has high coarse aggregate content that interlocks to form a stone skeleton to prevent heavy traffic. Nowadays the second-product is the world concern issue, Basic Oxygen Furnace Slag (BOF) is the by-product from steelmaking, and the benefit to use BOF in SMA is high compressive strength and its cube shape. This research evaluates the engineering properties of BOF in SMA. Besides, SMA has high mastic content, we also evaluate mastic rheological behavior, creep and the relationship between mastic and mixture.
      This research use nature and BOF as coarse aggregate in SMA and Dense grade asphalt concrete (DGAC) with pen 85/100 (pen 85), pen 60/70 (pen 60) and modified asphalt (MA) to evaluate Marshall Stability, flow number and rutting performance. Also use dynamic shear rheometer (DSR) at different frequency and temperature to evaluation three mastic (pen 85, pen60 and MA) rheological behavior, and discuss relationship between creep and viscosity at 60℃, further explore mastic creep behavior and rutting performance on mixture.
      The result indicate use BOF as coarse aggregate can improve Marshall Stability, but BOF surface porosity may absorb more effect asphalt, and reduce V.M.A.. Add filler in asphalt can improve stiffness and elastic of binder; reduce temperature sensibility of MA. MA has better elastic recovery ability then unmodified binder, but viscosity of MA is more susceptible by shear stress and shear rate, use Brookfield measure viscosity has to consider the effect of shear rate. The rutting performance of asphalt concrete is effect by mastic and grade, first stage deformation is effect by mastic, and mastic and grade influence deformation in second stage. The rutting indicator G*/sinδ recommended by SHARP has worst correlation between creep and rutting, because it can’t stand for elastic recovery of binder.

    摘要 I ABSTRACT III 誌謝 V 目錄 VI 表目錄 XI 圖目錄 XIII 第一章 緒論 1-1 1.1 前言 1-1 1.2研究動機 1-4 1.3研究目的 1-5 1.4研究範圍 1-5 第二章 文獻回顧 2-1 2.1 石膠泥瀝青混凝土 2-1 2.1.1 粒料 2-2 2.1.2 填充料 2-3 2.1.3 瀝青 2-5 2.1.4 纖維 2-6 2.2 轉爐石之特性 2-7 2.2.1 轉爐石生產流程 2-7 2.2.2 轉爐石基本性質 2-9 2.2.2.1 轉爐石之物理性質 2-9 2.2.2.2 轉爐石之化學性質 2-10 2.2.3 轉爐石之安定化 2-12 2.3 國內外轉爐石應用於瀝青混凝土之現況 2-16 2.3.1 國外轉爐石應用之現況 2-16 2.3.2 國內轉爐石應用之現況 2-17 2.4 粒料間孔隙(V.M.A.) 2-18 2.5 膠漿潛變行為 2-19 2.6 零剪力黏度 (ZERO SHEAR VISCOSITY,ZSV) 2-21 第三章 研究計畫 3-1 3.1 試驗架構與流程 3-1 3.2 試驗材料與規範 3-3 3.3 瀝青物性試驗 3-4 3.3.1 針入度試驗 3-4 3.3.2 黏滯度試驗 3-4 3.3.3 比重試驗 3-5 3.3.4 薄膜烘箱加熱試驗 3-5 3.4 粒料基本物性試驗 3-5 3.4.1 篩分析試驗 3-5 3.4.2 比重及吸水率試驗 3-6 3.4.3 洛杉磯磨損試驗 3-6 3.4.4 健性試驗 3-6 3.5 SMA配比設計 3-7 3.5.1 SMA配比設計流程 3-9 3.6 瀝青混凝土工程性質試驗 3-12 3.6.1 穩定值與流度值試驗 3-12 3.6.2 瀝青混凝土輪跡試驗 3-13 3.7 轉爐石體積修正 3-14 3.8 BET比表面積試驗 3-18 3.9動態剪切流變儀(DSR) 3-19 3.10 瀝青膠漿試驗 3-20 3.10.1 膠漿試體準備 3-20 3.10.2 頻率掃描試驗(Frequency Sweep) 3-21 3.10.3 重覆載重潛變試驗(Pulse Creep) 3-21 3.11 零剪力黏度(ZSV) 決定方法 3-22 3.11.1 Cross模型 3-22 3.11.2 Carreau模型 3-24 3.11.3 潛變試驗 3-25 3.12 瀝青膠漿潛變與實驗室瀝青混凝土車轍之關係 3-27 第四章 試驗結果與討論 4-1 4.1 試驗材料基本特性 4-1 4.1.1 瀝青黏結料物性試驗 4-1 4.1.2 粒料物性試驗 4-3 4.2 馬歇爾配比設計結果 4-4 4.2.1 密級配瀝青混凝土級配曲線 4-4 4.2.2 石膠泥瀝青混凝土級配曲線 4-6 4.2.3 馬歇爾穩定值與流度值 4-7 4.2.4 粒料間孔隙(V.M.A.) 4-9 4.3 瀝青膠漿質流行為 4-12 4.4 瀝青膠漿潛變試驗結果 4-17 4.5 穩態黏度(SSV)與零剪力黏度(ZSV)之關係 4-21 4.6 膠漿潛變與實驗室瀝青混凝土車轍之關係 4-25 4.6.1 不同級配之膠漿與混凝土永久應變之關係 4-27 4.6.2 不同瀝青膠漿與混凝土永久應變之關係 4-29 4.6.3 車轍參數之相關性分析 4-31 4.7 ZSV與車轍參數K1之關係 4-35 第五章 結論與建議 5-1 5.1 結論 5-1 5.2 建議 5-3 參考文獻 參-1

    王金鐘 (2005) 轉爐石作為基底層材料及其工程特性之研究,博士論文,國立成功大學土木工程系,台南。
    中華鋪面工程學會 (2004) 「第六屆鋪面材料再生學術研討會論文集」,桃園。
    中華鋪面工程學會 (2010) 「轉爐石應用於瀝青混凝土鋪面使用手冊」,第11-13頁。
    中國國家標準 (2001) 「CNS14602 道路用鋼爐碴」,經濟部標準檢驗局。
    中國鋼鐵股份有限公司 (2000) 「轉爐石推廣手冊」,高雄。
    中鋼集團 (2007) 「轉爐石利用推廣手冊」,高雄。
    林桂儀 (2006) 不同添加料對瀝青膠漿特性之影響,博士論文,國立成功大學土木工程系,台南。
    林秉祈 (2001) 台灣地區推動SMA 可行性之研究—以竹北市鋪道路為例,國立中央大學土木工程研究所碩士論文,中壢。
    陳虹潔 (2000)  骨材顆粒組構及型態對瀝青混凝土抗變形之影響,國立成功大學土木工程研究所碩士論文,台南。
    曾茂印 (2011) 多孔性瀝青混凝土老化及水侵害之影響與含水量介電性質分析,國立成功大學土木工程研究所碩士論文,台南。
    楊貫一 (1992) 「爐石資源化-中鋼公司爐石應用的過去與未來」,技術與訓練,第17卷,第1期,第31-46頁。
    蔡哲軒 (2011) 實驗室評估石膠泥瀝青混凝土(SMA)應用於機場道面,國立成功大學土木工程研究所碩士論文,台南。
    蔡攀鰲 (1984) 瀝青混凝土,三民書局,台北。
    劉國忠 (2001) 「煉鋼爐渣之資源化技術與未來推展方向」,環保月刊,第四期,十月號,第117-118頁。
    Ahmadinia, E., Zargar, M., Karim, M.R., Abdelaziz, M., and Shafigh, P. (2011). “Using Waste Plastic Bottles as Additive for Stone Mastic Asphalt,” Materials and Design, Vol.32, pp.4844-4849.
    Airey, G. D. (2004). “Styrene Butadiene Styrene Polymer Modification of Road Bitumens,” Journal of Materials science, Vol.39, pp.951–959.
    Anderson, D.A., and Goetz, W.H. (1973). “Mechanical Behavior and Reinforcement of Mineral Filler-Asphalt Mixtures,” Journal of the Association of Asphalt Paving Technologists, Vol.42, pp.37-66.
    Anderson, D.A., Le Hir, Y.M., Planche, J. and Martin, D. (2002). “Zero Shear Viscosity of Asphalt Binders,” Transportation Research Record, No.1810, pp.54-62.
    Bahia HU, Zeng M, Zhai H, Khatri., (1999). “Superpave protocols for Modified Asphalt Binders, 15th Quarterly Progess Report for NCHRP Project 9-10. National Cooperative Highway Research Program, Washington, D.C.
    Bahia HU, Hanson DI, Zeng M, Zhai H, Khatri MA, Anderson M. (2001). “Characterization of Modified Asphalt Binders in Superpave Mix Design.” National Cooperative Highway Research Program, Washington ,D.C.
    Bellin, P. (1992). “Use of Stone Mastic Asphalt in Germany-State of the Art,” Transportation Research Board Committee A2FO2, Washington, D.C.
    Binard, C., Anderson, D., Lapalu, L., Planche, J.P., (2004). ”Zero Shear Viscosity of Modified and Unmodified Binders,” Proceeding of the 3rd Eurasphalt & Eurobitume congress, Vienna, PP.1721-33.
    Bindu, C.S., and Beena, K.S, (2010). “Waste Plastic as a Stabilizing Additive in Stone Mastic Asphalt,” International Journal of Engineering and Technology, Vol.2, pp.379-387
    Brown, E.R., Haddock, J.E., Mallick R.B. and Lynn T.A. (1997). “Development of a Mixture Design Procedure for Stone Matrix Asphalt (SMA)”, National Center for Asphalt Technology, 97-3, Auburn
    Brown, E.R. and Haddock, J.E. (1997). “Method to Ensure Stone-on-Stone Contact in Stone Matrix Asphalt Paving Mixtures,” Transportation Research Board: Journal Transportation Research Record, Vol.1583, pp.11-18
    Brown, E.R. (1998). “Designing Stone Matrix Asphalt Mixtures,” National Center for Asphalt Technology, Project 9-9
    Brown, E. R., (1992). “Experience with Stone Matrix Asphalt in the United States,” National Center for Asphalt Technology, NCAT, 93-04, Auburn
    Brown, E.R., Mallick, R.B., Haddock, J.E. and Bukowski, J., (1997). “Performance of Stone Matrix Asphalt (SMA) Mixtures in the United States,” National Center for Asphalt Technology, NCAT, 97-1, Auburn.
    Bull, A.L., and Vonk, W.C. (1984). “Thermoplastic Rubber/Bitumen Blends for Roof and Road,” Shell Chemical Technical Manual TR 8-15, Amsterdam.
    Button, J.W., Little, D.N., Kim, Y., and Ahmed, J., (1987). “Mechanistic Evaluation of Selected Asphalt Additives,” Proceeding of Association of Asphalt Paving Technologists, Vol. 56, pp.62–90.
    Casey, D., McNally, C., Gibney, A., and Gilchrist, M.D., (2008). “Development of a Recycled Polymer Modified Binder for Use in Stone Mastic Asphalt,” Resources, Conservation and Recycling, Vol.52, pp.1167-1174.
    Carreau, P.J., Macdonald, I.F. and Bird, R.B. (1968). “A Nonlinear Viscoelastic Model for Polymer Solutions and Melts-II,” Chemical Engineering Science, Vol.23, pp.901-911.
    Chen, J.S., and Peng, C.H., (1998). “Analyses of Tensile Failure Properties of Asphalt-Mineral Filler Mastics,” Journal of materials in civil engineering, Vol.10, pp.256-262.
    Craus, J., Ishai, I., and Sides., A., (1978). “Some Physiochemical Aspects of the Effect and Role of the Filler in Bituminous Paving Mixtures,” Journal of the Association of Asphalt Paving Technologists, Vol.47, pp.558-588.
    Crawford, C. B., and Burn, K. N. (1969). “Building Damage from Expansive Steel Slag Backfill,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 95, pp. 1325-1334.
    Cross, M.M. (1965). “Rheology of Non-Newtonian Fluids: A New Flow Equation for Pseudoplastic Systems,” Journal of Colloid Science, Vol.20, pp.417-437.
    Da Silva,L.S. and De Alencastro Vignol, L.,(2004). “Study of Rheological Properties of Pure and Polymer-Modified Brazilian Asphalt Binders,” Journal of Materials Science, Vol.39, pp.539-546.
    Davidson, J. K. and Kennepohl, G. J., (1992). “Introduction of Stone Matrix Asphalt in Ontario,” Proceedings of Association of Asphalt Paving Technologists Annual Meeting, Vol.61-92, pp. 517–534.
    Desmazes, C., Lecomte, M., Lesueur, D. and Philips, M. (2000) “A Protocol for Reliable Measurement of Zero-Shear-Viscosity in Order to Evaluate the Anti-Rutting Performance of Binders,” Proceeding of the 2nd Eurasphalt & Eurobitume congress, Barcelona. pp.203-211.
    Denning, J. H., and Garswell, J., (1981). “Improvement in Rolled Asphalt Surfacings by the Addition of Organic Polymers,” Transport and Road Research Laboratory, 989.
    De Visscher, J., Soenen, H., Vanelstraete, A., Redelius,P., (2004) ”A Comparison of The Zero Shear Viscosity From Oscillation Tests and The Repeated Creep Test,” Proceedings of the 3rd Eurasphalt and Eurobitume Congress, Barcelona, Vienna. pp.1501-13.
    European Asphalt Pavement Association (EAPA) (1998). “Heavy Duty Surfaces: The Arguments for SMA Breuketen,” Nexherlands.
    Federal Highway Administration (FHWA) (1992). “Stone Mastic Asphalt Mixture Design,” FHWA-RD-92-006, Mclean, Virginia
    Federal Highway Administration (FHWA) (1994). ”SMA Material and Construction Model Guidelines,” SMA Technical Working Group, U.S
    Isacsson, U., and Lu, X. (1999). “Characterization of Bitumens Modified with SEBS, EVA and EBA Polymers,” Journal of Materials science, 34, pp.3737–3745.
    Kandhal, P. S., and Hoffman, G.L. (1997). “Evaluation of Steel Slag Fine Aggregate in Hot-Mix Asphalt Mixtures,” Transportation Research Record, Vol.1583, pp.28-36.
    Koide (1993). “Research on Using BOF Slag for Road Construction,” Nakayama Steel Works Technical Report, Osaka, Japan.
    Kraus,H., (1980). Creep Analysis, Wiley, New York.
    Hashin, Z., (1965). “Viscoelastic Behaviour of Heterogeneous Media,” Journal of Applied Mechanics Trans. ASME, No.9, pp.630-636
    Michael, L., Burke, G., and Schwartz, C.W.,(2003). ”Performance of Stone Matrix Asphalt Pavements in Maryland,” Journal of Association of Asphalt Paving Technologists Annual Meeting, Vol.72, pp.287-314
    Mogawer, W.S. and Stuart, K.D., (1995). “Effect of Coarse Aggregate Content on Stone Matrix Asphalt Rutting and Draindown,” Transportation Research Record 1492, pp.1-11
    National Asphalt Pavement Association (1994). “Guidelines for Materials, Production, and Placement of Stone Matrix Asphalt,” SMA Technical Working Group (TWG), Maryland
    Nikolaides, A., (2000). “Rutting and Volumetric Properties of SMA Mixtures,” Proceedings Institution of Civil Engineers: Transport , Vol.141, No.3, pp.135-141
    Panda, M., and Mazumdar, M. (2002). “Utilization of Reclaimed Polyethylene in Bituminous Paving Mixes,” Journal of Materials in Civil Engineering, Vol.14, No.6, pp.527–530
    Pasetto, M., (2000). “Porous Asphalt Concretes with Added Microfibers,” Proceedings of the 2nd Eurasphalt and Eurobitume Congress, Barcelona, Spain, pp. 438-447
    Pillips, M.C., and Robertus, C., (1996). “Binder Rheology and Asphalt Pavement Permanent Deformation; The Zero Shear Viscosity,” Proceedings of the Eurasphalt and Eurobitume Congress, Barcelona, Straβbourg.
    Rohde, L., Nunez, W.P., and Ceratti, J.A.P. (2003). “Electric Arc Furnace Steel Slag:Base Material for Low-Volume Roads,” Transportation Research Record, n 1819, pp. 201-207.
    Salter, R. J., and Rafati-Afshar, F., (1987). “Effect of Additives on Bituminous Highway Pavement Materials Evaluated by Indirect Tensile Test,” Transportation Research Record, Vol.1115, pp.183–195.
    Sengoz, B., and Isikyakar, G. (2008). “Evaluation of the Properties and Microstructure of SBS and EVA Polymer Modified Bitumen,” Construction and Building Materials, Vol.22, pp.1897–1905.
    Shenoy, A., (2002). “Model-fitting the Master Curves of The Dynamic Shear Rheometer Data to Extract a Rut-Controlling Term for Asphalt Pavements,” ASTM J Test Eval, 30(2)95-102.
    Smith, B.J., Hesp, S., (2000) “Crack Pinning in Asphalt Mastic and Concrete: Effect of Rest Periods and Polymer Modifiers on The Fatigue Life,” Proceedings of the 2nd Euroasphalt & Eurobitume Congress, pp.539-45.
    Taherkhani, H., and Coollop, A.C. (2006). “Creep and Recovery Testing of Pure Bitumen Using Dynamic Shear Rheometer,” Proceedings of the 7th International Congress on Civil Engineering, Iran, pp.8-13.
    West, R.C., Moore, J.R., Jared, D.M., and Wu, Y. (2007). “Evaluating Georgia’s Compaction Requirements For Stone Matrix Asphalt Mixtures,” Transportation Research Record: Journal of the Transportation Research Board , Vol.2001, pp.93-101.
    Wu, S., Xue, Y., Ye, Q., and Chen, Y. (2007). “Utilization of Steel Slag as Aggregates for Stone Mastic Asphalt (SMA) Mixtures,” Building and Environment, Vol.42, pp. 2580-2585.

    無法下載圖示 校內:2015-08-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE