| 研究生: |
沈柏丞 Shen, Po-Cheng |
|---|---|
| 論文名稱: |
深度學習於晶圓圖辨識與品檢覆判系統 Deep Learning for Wafer Bin Map Recognition and Quality Re-Inspection System |
| 指導教授: |
李家岩
Lee, Chia-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 晶圓識別 、深度學習 、晶圓缺陷功能碼識別 、自編碼器 、智慧製造 |
| 外文關鍵詞: | Wafer Recognition, Deep Learning, Wafer Bin Code Recognition, Autoencoder, Smart Manufacturing |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在台灣,半導體產業被視為最重要的產業之一,在科技及技術大爆炸的時代下,消費性電子產品不斷地推陳出新,促使市場對於半導體有很高之需求,半導體製程複雜且規格要求嚴苛,因此晶圓的製作成本相當昂貴,半導體廠商為提高競爭力,除了製程能力提升外,更著重於數據分析,由於半導體製程高度自動化資訊易於取得,在此狀況下有利於工程師檢測故障模式及識別製造問題,達到成本降低之目的。
在文獻中,常以晶圓探針測試中的缺陷所形成空間之圖案,進行分類或分群,不同類型的空間圖案會反映出生產之信息,藉由這些資訊推斷異常發生之原因。在本研究中將以某封裝廠為例,除了開發在不良率極低的製程下,找出有分析價值之資料的晶圓圖辨識系統外,另外藉由晶圓上缺陷之識別碼,開發品檢覆判系統,目前文獻上尚未發現相同之研究,由於本研究自動光學檢驗系統較舊,為了避免漏篩情形發生,設備調整較為靈敏導致過篩情形發生,所以必須有操作員進行確認的動作,為了解決人員差異及誤判問題,為此,本研究藉由統計學上Jaccard的方法,延伸開發了一個空間分類器,將隨機及特殊群聚區分開來,並針對特殊群聚類別進行資料分析,再藉由捲積自編碼器(Convolutional Autoencoder, CAE)進行資料增生,解決資料不平衡之問題。最後,將人員所判讀後之訊息,搭配深度學習進行預測,找出人員判定異常之區域。在實務上,其優點是保留彈性,藉由AI強大的整合能力,搭配人員實戰經驗進行互補,系統與人員皆可學習成長,實踐具有彈性決策之智慧製造系統。
In Taiwan, the semiconductor industry is regarded as one of the most important industries. The semiconductor manufacturing process is complex and the specifications are strict. Therefore, the cost of manufacturing wafers is quite expensive. In order to maintain competitiveness, semiconductor manufacturers focus on data analysis in addition to the improvement of process capabilities. Because semiconductor processes are highly automated and information is easily available, it is beneficial to engineers in this situation. Detect failure modes and identify manufacturing problems to achieve cost reduction.
In this study, the assembly house will be taken as an example. In addition to developing a Wafer Pattern Reˇcognition System that finds analytically valuable data under a very low failure rate process, this study also developed a Quality Re-Inspection System. Since the Automatic Optical Inspection System in this study is relatively outdated, in order to avoid the occurrence of omissions, the equipment adjustment is more sensitive and overkill occurs. Therefore, the operator must confirm the action to solve the problem. Personnel differences and misjudgments. In this study, by statistically Jaccard's method, a spatial classifier was developed to separate random and systematic, and data analysis was performed for systematic, and then by convolutional autoencoder , CAE) to accumulate data to solve the problem of data imbalance. Finally, the information judged by the personnel is combined with deep learning to make predictions to find out the areas where the personnel judge abnormal. In practice, its advantage is that it retains flexibility. With AI's powerful integration capabilities and complementing the experience of personnel, both the system and personnel can learn and grow, and practice smart manufacturing systems with flexible decisions.
參考文獻
1. Alpaydin, E. (2020). Introduction to machine learning: MIT press.
2. Chen, F. L., & Liu, S. F. (2000). A neural-network approach to recognize defect spatial pattern in semiconductor fabrication. IEEE Transactions on Semiconductor Manufacturing, 13(3), 366-373. doi:10.1109/66.857947
3. Chien, C. F., Hsu, S. C., & Chen, Y. J. (2013). A system for online detection and classification of wafer bin map defect patterns for manufacturing intelligence. International Journal of Production Research, 51(8), 2324-2338. doi:10.1080/00207543.2012.737943
4. Fan, M., Wang, Q., & van der Waal, B. (2016). Wafer defect patterns recognition based on OPTICS and multi-label classification. Paper presented at the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC).
5. Friedman, D. J., Hansen, M. H., Nair, V. N., & James, D. A. (1997). Model-free estimation of defect clustering in integrated circuit fabrication. IEEE Transactions on Semiconductor Manufacturing, 10(3), 344-359. doi:10.1109/66.618208
6. Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193-202.
7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y. (2014). Generative adversarial nets. Paper presented at the Advances in neural information processing systems.
8. Hansen, M. H., Nair, V. N., & Friedman, D. J. (1997). Monitoring wafer map data from integrated circuit fabrication processes for spatially clustered defects. Technometrics, 39(3), 241-253. doi:10.2307/1271129
9. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
10. Hinton, G. E. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786), 504-507. doi:10.1126/science.1127647
11. Hwang, J. Y., & Kuo, W. (2007). Model-based clustering for integrated circuit yield enhancement. European Journal of Operational Research, 178(1), 143-153. doi:10.1016/j.ejor.2005.11.032
12. Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25.
13. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
14. Kong, Y. T., & Ni, D. (2020). A Semi-Supervised and Incremental Modeling Framework for Wafer Map Classification. IEEE Transactions on Semiconductor Manufacturing, 33(1), 62-71. doi:10.1109/tsm.2020.2964581
15. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Paper presented at the Advances in neural information processing systems.
16. Krose, B., & van der Smagt, P. (1996). An Introduction to Neural Networks. In.
17. Kumar, S., & Aggarwal, R. (2018). Augmented Handwritten Devanagari Digit Recognition Using Convolutional Autoencoder. Paper presented at the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA).
18. Kyeong, K., & Kim, H. (2018). Classification of Mixed-Type Defect Patterns in Wafer Bin Maps Using Convolutional Neural Networks. IEEE Transactions on Semiconductor Manufacturing, 31(3), 395-402. doi:10.1109/tsm.2018.2841416
19. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
20. Liao, C. S., Hsieh, T. J., Huang, Y. S., & Chien, C. F. (2014). Similarity Searching for Defective Wafer Bin Maps in Semiconductor Manufacturing. IEEE Transactions on Automation Science and Engineering, 11(3), 953-960. doi:10.1109/tase.2013.2277603
21. Liu, C. W., & Chien, C. F. (2013). An intelligent system for wafer bin map defect diagnosis: An empirical study for semiconductor manufacturing. Engineering Applications of Artificial Intelligence, 26(5-6), 1479-1486. doi:10.1016/j.engappai.2012.11.009
22. Makhzani, A., & Frey, B. (2013). K-sparse autoencoders. arXiv preprint arXiv:1312.5663.
23. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2015). Adversarial autoencoders. arXiv preprint arXiv:1511.05644.
24. Masci, J., Meier, U., Cireşan, D., & Schmidhuber, J. (2011). Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. In (pp. 52-59): Springer Berlin Heidelberg.
25. Nakazawa, T., & Kulkarni, D. V. (2018). Wafer map defect pattern classification and image retrieval using convolutional neural network. IEEE Transactions on Semiconductor Manufacturing, 31(2), 309-314.
26. Piao, M., Jin, C. H., Lee, J. Y., & Byun, J. Y. (2018). Decision Tree Ensemble-Based Wafer Map Failure Pattern Recognition Based on Radon Transform-Based Features. IEEE Transactions on Semiconductor Manufacturing, 31(2), 250-257. doi:10.1109/tsm.2018.2806931
27. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015). Going deeper with convolutions. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
28. Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008a). Extracting and composing robust features with denoising autoencoders. Paper presented at the Proceedings of the 25th international conference on Machine learning.
29. Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008b, 2008). Extracting and composing robust features with denoising autoencoders.
30. Wang, C. H., Kuo, W., & Bensmail, H. (2006). Detection and classification of defect patterns on semiconductor wafers. Iie Transactions, 38(12), 1059-1068. doi:10.1080/07408170600733236
31. Wong, S. C., Gatt, A., Stamatescu, V., & McDonnell, M. D. (2016). Understanding data augmentation for classification: when to warp? Paper presented at the 2016 international conference on digital image computing: techniques and applications (DICTA).
32. Wu, M. J., Jang, J. S. R., & Chen, J. L. (2015). Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-Scale Data Sets. IEEE Transactions on Semiconductor Manufacturing, 28(1), 1-12. doi:10.1109/tsm.2014.2364237
33. Yu, N. G., Xu, Q., & Wang, H. L. (2019). Wafer Defect Pattern Recognition and Analysis Based on Convolutional Neural Network. IEEE Transactions on Semiconductor Manufacturing, 32(4), 566-573. doi:10.1109/tsm.2019.2937793
34. 吳昭賢. (2019). 線上資料科學技術於半導體設備之故障診斷與預警(碩士論文)。 國立成功大學,台南市。
35. 翁茂虔. (2008). 應用空間檢定與不變性轉換距離於晶圓圖分類問題(碩士論文)。 國立成功大學,台南市。
36. 簡禎富、許嘉裕. (2014). 資料挖礦與大數據分析。新北市:前程文化。
網頁資源
37. Li(2017) Which machine learning algorithm should I use?. April 12 2017, 取自:https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/ 最後瀏覽日:2020/06/01