簡易檢索 / 詳目顯示

研究生: 沈柏丞
Shen, Po-Cheng
論文名稱: 深度學習於晶圓圖辨識與品檢覆判系統
Deep Learning for Wafer Bin Map Recognition and Quality Re-Inspection System
指導教授: 李家岩
Lee, Chia-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程管理碩士在職專班
Engineering Management Graduate Program(on-the-job class)
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 55
中文關鍵詞: 晶圓識別深度學習晶圓缺陷功能碼識別自編碼器智慧製造
外文關鍵詞: Wafer Recognition, Deep Learning, Wafer Bin Code Recognition, Autoencoder, Smart Manufacturing
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在台灣,半導體產業被視為最重要的產業之一,在科技及技術大爆炸的時代下,消費性電子產品不斷地推陳出新,促使市場對於半導體有很高之需求,半導體製程複雜且規格要求嚴苛,因此晶圓的製作成本相當昂貴,半導體廠商為提高競爭力,除了製程能力提升外,更著重於數據分析,由於半導體製程高度自動化資訊易於取得,在此狀況下有利於工程師檢測故障模式及識別製造問題,達到成本降低之目的。
    在文獻中,常以晶圓探針測試中的缺陷所形成空間之圖案,進行分類或分群,不同類型的空間圖案會反映出生產之信息,藉由這些資訊推斷異常發生之原因。在本研究中將以某封裝廠為例,除了開發在不良率極低的製程下,找出有分析價值之資料的晶圓圖辨識系統外,另外藉由晶圓上缺陷之識別碼,開發品檢覆判系統,目前文獻上尚未發現相同之研究,由於本研究自動光學檢驗系統較舊,為了避免漏篩情形發生,設備調整較為靈敏導致過篩情形發生,所以必須有操作員進行確認的動作,為了解決人員差異及誤判問題,為此,本研究藉由統計學上Jaccard的方法,延伸開發了一個空間分類器,將隨機及特殊群聚區分開來,並針對特殊群聚類別進行資料分析,再藉由捲積自編碼器(Convolutional Autoencoder, CAE)進行資料增生,解決資料不平衡之問題。最後,將人員所判讀後之訊息,搭配深度學習進行預測,找出人員判定異常之區域。在實務上,其優點是保留彈性,藉由AI強大的整合能力,搭配人員實戰經驗進行互補,系統與人員皆可學習成長,實踐具有彈性決策之智慧製造系統。

    In Taiwan, the semiconductor industry is regarded as one of the most important industries. The semiconductor manufacturing process is complex and the specifications are strict. Therefore, the cost of manufacturing wafers is quite expensive. In order to maintain competitiveness, semiconductor manufacturers focus on data analysis in addition to the improvement of process capabilities. Because semiconductor processes are highly automated and information is easily available, it is beneficial to engineers in this situation. Detect failure modes and identify manufacturing problems to achieve cost reduction.
    In this study, the assembly house will be taken as an example. In addition to developing a Wafer Pattern Reˇcognition System that finds analytically valuable data under a very low failure rate process, this study also developed a Quality Re-Inspection System. Since the Automatic Optical Inspection System in this study is relatively outdated, in order to avoid the occurrence of omissions, the equipment adjustment is more sensitive and overkill occurs. Therefore, the operator must confirm the action to solve the problem. Personnel differences and misjudgments. In this study, by statistically Jaccard's method, a spatial classifier was developed to separate random and systematic, and data analysis was performed for systematic, and then by convolutional autoencoder , CAE) to accumulate data to solve the problem of data imbalance. Finally, the information judged by the personnel is combined with deep learning to make predictions to find out the areas where the personnel judge abnormal. In practice, its advantage is that it retains flexibility. With AI's powerful integration capabilities and complementing the experience of personnel, both the system and personnel can learn and grow, and practice smart manufacturing systems with flexible decisions.

    目錄 X 第一章 緒論 1 1.1 研究背景與動機(Background and Motivation) 1 1.2 研究目的(Purpose)與問題描述(Problem Description) 3 1.3 研究架構 5 第二章 文獻回顧 6 2.1 晶圓圖識別 (Classification of Wafer Bin Map Defect Patterns) 6 2.2 機器學習(Machine Learning) 10 2.3 神經網路(Neural Network) 12 2.4 數據增強 (Data Augmentation) 13 2.5 小結 16 第三章 晶圓缺陷辨識系統 17 3.1 分析流程與架構 17 3.2 資料預處理(Data Processing) 19 3.2.1 不良率計算(Failure Percentage) 19 3.2.2 空間隨機過濾器 (Spatial randomness filters) 19 3.2.3 適應性雅卡爾掃描空間過濾器 (Adaptive Jaccard Spatial Scan filters, AJSSF) 20 3.3 隨機缺陷區域分布(Regional distribution of random defects) 22 3.4 圖像降噪(Denosie) 24 3.5 二元轉換(Binary Transformation) 24 3.6 捲積自動編碼器(Convolutional Autoencoder, CAE) 25 3.6.1 捲積運算 25 3.6.2 編碼器(Encoder) 26 3.6.3 解碼器(Decoder) 26 3.6.4 運用於資料擴增(Data Augmentation) 26 3.7 捲積神經網路(Convolutional Neural Network, CNN) 27 3.7.1 捲積層(Convolution Layer) 27 3.7.2 池化層(Pooling Layer) 28 3.7.3 激活函數(Activation Function) 29 3.7.4 全連接層 30 3.8 晶圓缺陷辨識系統 30 3.8.1 隨機及特殊群聚晶圓圖分類 30 3.8.2 隨機缺陷區域分布結果 32 3.8.3 特殊群聚之晶圓類別及降噪處理 33 3.8.4 資料擴增 35 3.8.5 效度 37 3.8.6 CNN Model 38 第四章 品檢覆判系統 43 4.1 資料擴增(CAE) 43 4.2 資料擴增(影像翻轉) 45 4.3 深度神經網路 46 4.3.1 參數設置 47 4.4 實驗結果 47 第五章 結論與未來研究 52 參考文獻 53 表目錄 表 2. 1 晶圓缺陷分類研究比較表 9 表 2. 2 五種CNN經典模型 13 表 2. 3 圖像擴增基本方法 14 表 2. 4 數據擴增方法列表 15 表 3. 1 研究流程對照表 17 表 3. 2 三種不同WBM空間掃描結果 21 表 3. 3 激發函數及其函式與圖形 29 表 3. 4 AJSSF 分類結果 31 表 3. 5 不同類別之晶圓圖 33 表 3. 6 使用CAE生成之資料 36 表 3. 7 CONFUSION MATRIX 37 表 3. 8 CNN MODEL (NAKAZAWA & KULKARNI, 2018) 38 表 3. 9 CNN參數設定及電腦配備 39 表 3. 10 三種模型在5-FOLD CROSS VALIDATION 結果彙整表 42 表 3. 11 降噪與未降躁5-FOLD CROSS VALIDATION 結果彙整表 42 表 4. 1 BINCODE 代碼對應之數值 44 表 4. 2 DNN 參數設定及電腦配備 47 表 4. 3 兩種擴增模型在5-FOLD CROSS VALIDATION 彙整表 48   圖目錄 圖 1. 1 As Is Model 2 圖 1. 2 To Be Model 2 圖 1. 3 晶圓缺陷圖識別系統 3 圖 1. 4 品檢覆判系統 4 圖 1. 5 研究架構 5 圖 2. 1 Wafer Bin Map(翁茂虔,2008) 6 圖 2. 2由隨機及特殊群聚所組成的晶圓缺陷模式 7 圖 2. 3 機器學習在不同目的上搭配之方法(Li , 2017) 11 圖 2. 4 AlexNet 捲積神經網路架構圖 12 圖 3. 1 資料分析流程與架構 18 圖 3. 2 相鄰關係圖 19 圖 3. 3 三種晶圓缺陷空間分布狀況(Liu & Chien, 2013) 20 圖 3. 5 適應性掃描 21 圖 3. 4 Scan Filter 21 圖 3. 6 晶圓區域分割圖(左)、晶圓分區圖(右) 22 圖 3. 7 晶圓隨機缺陷分類圖 23 圖 3. 8 隨機缺陷區域數量統計圖 23 圖 3. 9 3×3 Denoise filter 24 圖 3. 10 降噪運作方式 24 圖 3. 11 Convolutional Autoencoder 25 圖 3. 12 CAE用於資料擴增之方法 27 圖 3. 13 特徵萃取步驟(Kumar & Aggarwal, 2018) 28 圖 3. 14 池化步驟 28 圖 3. 15 ReLU 激發神經元之過程 29 圖 3. 16 良率占比圖 30 圖 3. 17 隨機晶圓與特殊群聚晶圓占比圖 30 圖 3. 18 one die fail 、more than one dies fail 及 Random 占比圖 32 圖 3. 19 各組區域分類結果 32 圖 3. 20 各類別數量長條圖 34 圖 3. 21 5-fold 訓練 34 圖 3. 22 降噪效果展示 34 圖 3. 23 CAE模型結構 35 圖 3. 24 資料擴增前後數量統計圖 37 圖 3. 25 三種模型在5-fold cross validation 各類別之精確率 39 圖 3. 26 三種模型在5-fold cross validation 各類別之精確率標準差 39 圖 3. 27 三種模型在5-fold cross validation 各類別之召回率 40 圖 3. 28 三種模型在5-fold cross validation 各類別之召回率標準差 40 圖 3. 29 三種模型在5-fold cross validation 各類別之F1-score 40 圖 3. 30 三種模型在5-fold cross validation 各類別之F1-score標準差 40 圖 3. 31 三種模型在5-fold cross validation 各類別之準確率與準確率標準差 41 圖 3. 32 三種模型在5-fold cross validation 各類別之loss與loss標準差 41 圖 3. 33 三種模型在5-fold cross validation 各類別之訓練時間 41 圖 4. 1 各種類Bincode降噪前後數量對照圖 43 圖 4. 2 經由CAE擴增後之資料 44 圖 4. 3 擴增資料雜訊處理 44 圖 4. 4 CAE資料擴增前後數量統計圖 45 圖 4. 5 影像翻轉 45 圖 4. 6 WBM Flatten 46 圖 4. 7 Deep Neural Network 46 圖 4. 8 SMAPE 比較圖 47 圖 4. 9 MSE 比較圖 48 圖 4. 10 MAE 比較圖 48 圖 4. 11驗證集之實際值與預測值在不同種類之Bincode數量比較 49 圖 4. 12 實際值與預測值之Bincode數量差 50 圖 4. 13 差值排序與閥值 51 圖 4. 14 篩選後之差值圖 51 圖 4. 15 異常點位之展示 51

    參考文獻
    1. Alpaydin, E. (2020). Introduction to machine learning: MIT press.
    2. Chen, F. L., & Liu, S. F. (2000). A neural-network approach to recognize defect spatial pattern in semiconductor fabrication. IEEE Transactions on Semiconductor Manufacturing, 13(3), 366-373. doi:10.1109/66.857947
    3. Chien, C. F., Hsu, S. C., & Chen, Y. J. (2013). A system for online detection and classification of wafer bin map defect patterns for manufacturing intelligence. International Journal of Production Research, 51(8), 2324-2338. doi:10.1080/00207543.2012.737943
    4. Fan, M., Wang, Q., & van der Waal, B. (2016). Wafer defect patterns recognition based on OPTICS and multi-label classification. Paper presented at the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC).
    5. Friedman, D. J., Hansen, M. H., Nair, V. N., & James, D. A. (1997). Model-free estimation of defect clustering in integrated circuit fabrication. IEEE Transactions on Semiconductor Manufacturing, 10(3), 344-359. doi:10.1109/66.618208
    6. Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193-202.
    7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y. (2014). Generative adversarial nets. Paper presented at the Advances in neural information processing systems.
    8. Hansen, M. H., Nair, V. N., & Friedman, D. J. (1997). Monitoring wafer map data from integrated circuit fabrication processes for spatially clustered defects. Technometrics, 39(3), 241-253. doi:10.2307/1271129
    9. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    10. Hinton, G. E. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786), 504-507. doi:10.1126/science.1127647
    11. Hwang, J. Y., & Kuo, W. (2007). Model-based clustering for integrated circuit yield enhancement. European Journal of Operational Research, 178(1), 143-153. doi:10.1016/j.ejor.2005.11.032
    12. Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25.
    13. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
    14. Kong, Y. T., & Ni, D. (2020). A Semi-Supervised and Incremental Modeling Framework for Wafer Map Classification. IEEE Transactions on Semiconductor Manufacturing, 33(1), 62-71. doi:10.1109/tsm.2020.2964581
    15. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Paper presented at the Advances in neural information processing systems.
    16. Krose, B., & van der Smagt, P. (1996). An Introduction to Neural Networks. In.
    17. Kumar, S., & Aggarwal, R. (2018). Augmented Handwritten Devanagari Digit Recognition Using Convolutional Autoencoder. Paper presented at the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA).
    18. Kyeong, K., & Kim, H. (2018). Classification of Mixed-Type Defect Patterns in Wafer Bin Maps Using Convolutional Neural Networks. IEEE Transactions on Semiconductor Manufacturing, 31(3), 395-402. doi:10.1109/tsm.2018.2841416
    19. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
    20. Liao, C. S., Hsieh, T. J., Huang, Y. S., & Chien, C. F. (2014). Similarity Searching for Defective Wafer Bin Maps in Semiconductor Manufacturing. IEEE Transactions on Automation Science and Engineering, 11(3), 953-960. doi:10.1109/tase.2013.2277603
    21. Liu, C. W., & Chien, C. F. (2013). An intelligent system for wafer bin map defect diagnosis: An empirical study for semiconductor manufacturing. Engineering Applications of Artificial Intelligence, 26(5-6), 1479-1486. doi:10.1016/j.engappai.2012.11.009
    22. Makhzani, A., & Frey, B. (2013). K-sparse autoencoders. arXiv preprint arXiv:1312.5663.
    23. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2015). Adversarial autoencoders. arXiv preprint arXiv:1511.05644.
    24. Masci, J., Meier, U., Cireşan, D., & Schmidhuber, J. (2011). Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. In (pp. 52-59): Springer Berlin Heidelberg.
    25. Nakazawa, T., & Kulkarni, D. V. (2018). Wafer map defect pattern classification and image retrieval using convolutional neural network. IEEE Transactions on Semiconductor Manufacturing, 31(2), 309-314.
    26. Piao, M., Jin, C. H., Lee, J. Y., & Byun, J. Y. (2018). Decision Tree Ensemble-Based Wafer Map Failure Pattern Recognition Based on Radon Transform-Based Features. IEEE Transactions on Semiconductor Manufacturing, 31(2), 250-257. doi:10.1109/tsm.2018.2806931
    27. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015). Going deeper with convolutions. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    28. Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008a). Extracting and composing robust features with denoising autoencoders. Paper presented at the Proceedings of the 25th international conference on Machine learning.
    29. Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008b, 2008). Extracting and composing robust features with denoising autoencoders.
    30. Wang, C. H., Kuo, W., & Bensmail, H. (2006). Detection and classification of defect patterns on semiconductor wafers. Iie Transactions, 38(12), 1059-1068. doi:10.1080/07408170600733236
    31. Wong, S. C., Gatt, A., Stamatescu, V., & McDonnell, M. D. (2016). Understanding data augmentation for classification: when to warp? Paper presented at the 2016 international conference on digital image computing: techniques and applications (DICTA).
    32. Wu, M. J., Jang, J. S. R., & Chen, J. L. (2015). Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-Scale Data Sets. IEEE Transactions on Semiconductor Manufacturing, 28(1), 1-12. doi:10.1109/tsm.2014.2364237
    33. Yu, N. G., Xu, Q., & Wang, H. L. (2019). Wafer Defect Pattern Recognition and Analysis Based on Convolutional Neural Network. IEEE Transactions on Semiconductor Manufacturing, 32(4), 566-573. doi:10.1109/tsm.2019.2937793
    34. 吳昭賢. (2019). 線上資料科學技術於半導體設備之故障診斷與預警(碩士論文)。 國立成功大學,台南市。
    35. 翁茂虔. (2008). 應用空間檢定與不變性轉換距離於晶圓圖分類問題(碩士論文)。 國立成功大學,台南市。
    36. 簡禎富、許嘉裕. (2014). 資料挖礦與大數據分析。新北市:前程文化。

    網頁資源
    37. Li(2017) Which machine learning algorithm should I use?. April 12 2017, 取自:https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/ 最後瀏覽日:2020/06/01

    下載圖示 校內:2025-01-01公開
    校外:2025-01-01公開
    QR CODE