| 研究生: |
林暐哲 Lin, Wei-Jhe |
|---|---|
| 論文名稱: |
可從250毫伏到1.2伏的廣輸入範圍且具有高功率轉換效率之太陽能能量擷取電路設計 Design of a 250mV-1.2V Wide Input Range Solar Energy Harvesting Circuit with High Converting Power Efficiency |
| 指導教授: |
邱瀝毅
Chiou, Lih-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 能量擷取電路 、廣輸入範圍 |
| 外文關鍵詞: | Energy harvesting, Wide input voltage range |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於可攜帶式電子產品蓬勃發展,在能量消耗考量為主的應用中,如可攜式行動裝置、生醫電子系統、以及無線感測器等,這類型產品的一大電源議題就是本身都會是難以更換電池,甚至是無法更換,也因此透過能量擷取電路的特性來緩解產品的電源議題。
然而,在以大自然能量為來源的前提下,輸入變化卻往往會超過一般設計中能穩定操作的範圍,也因此在電路的設計上就以擴大輸入電壓範圍為目標進行。
本論文所提出的架構使用了開關電容陣列的切換來達成提升輸入電壓範圍至250mV~1.2V,並給予輸出電壓可離散性的變換7個不同準位高低,以及維持全系統輸入輸出端對端轉換效率在40%以上(300mV~1.2V輸入)的結果,並將全設計以台積電90奈米製程實作,大部份運作關鍵的電容皆已經整合入晶片中,因此外部印刷電路板僅有使用者的測試訊號開關以及電源端的去耦合電容存在,更加的符合體積的需求,並且全晶片不需接外部參考電壓輸入下運作,但仍具有保留從外部擴充關鍵被動元件的設計。
This thesis proposes a method to take advantage of the configurable capacitor array to cope with the input voltage instability caused by changes in ambient energy input variation in energy harvesting applications. The work attempts to integrate all the circuit components including most parts of passive components on a chip. The proposed design can operate with only on-chip capacitors, so it will reduce the total PCB layout area comparing to other designs with off-chip capacitors or inductors.
The proposed energy harvesting circuit can extend its input voltage to a much wider range in theory and is not limited by the boundary of set-up conversion or step-down conversion when implemented only one, but not both. It is because the proposed work can provide both step-up and step-down conversion simultaneously. At the output side, the circuit adds a custom digital regulator to make the output voltage adjustable to seven different voltage levels by only control signals without additional reference voltages.
The design achieves 77% in overall end-to-end peak efficiency. With adaptive conversion ratio control, the work can maintain its conversion efficiency above 40% for the input range from 300mV to 1.2V.
[1]. A. S. Weddell, M. Magno, G. V. Merrett, D. Brunelli, B. M. Al-Hashimi, L. Benini, “A survey of multi-source energy harvesting systems,” in Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.905-908, 2013
[2]. M. Belleville, E. Cantatore, H. Fanet, P. Fiorini, P. Nicole, M. Pelgrom, C. Piguet, R. Hahn, C. Van Hoof, R.J.M. Vullers, M. Tartagni, “Energy autonomous systems : future trends in devices, technology, and systems.” Paris: CATRENE, 84 pp, 2009.
[3]. G. E. Moore, “No Exponential is Forever: But “Forever” Can Be Delayed!”, in Proc. IEEE international Solid-State Circuits Conference (ISSCC), vol.1, p.p.20-23, 2003.
[4]. Energy harvesting , CYMBET corporation. 2012 [Online]. Available: http://www.cymbet.com/design-center/energy-harvesting.php [May 2014]
[5]. A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Oak Ridge National Laboratory RSR, Oak Ridge, TN, USA [Online]. Available: http://www.nrel.gov/midc/ornl_rsr/ [May 2014]
[6]. LTC3108 Datasheet Linear Technology [Online] Available: http://www.linear.com/product/LTC3108 [May 2014]
[7]. V.W. Ng, S.R. Sanders, “A High-Efficiency Wide-Input-Voltage Range Switched Capacitor Point-of-Load DC–DC Converter,” IEEE Trans. Power Electronics, vol.28, no.9, pp.4335-4341, 2013
[8]. K. Bhattacharyya, “Trend towards the design of embedded DC-DC converters,” IET Power Electronics, vol.6, no.8, pp.1563-1574, 2013
[9]. C. Lu; V. Raghunathan, K. Roy, “Efficient Design of Micro-Scale Energy Harvesting Systems,” IEEE J. Emerging and Selected Topics in Circuits and Systems, vol.1, no.3, pp.254-266, 2011
[10]. Dr. Hong Ma, MIT open course, Topic: “Lecture 4: Power Supplies,” 77 Massachusetts Ave, Cambridge, MA 02139 USA, Sept. 19, 2007
[11]. T. L. Skvarenina, THE POWER ELECTRONICS HANDBOOK, CRC Press, 2001
[12]. M. D. Seeman, A Design Methodology for Switched-Capacitor Dc-Dc Converters, BiblioBazaar, 2011
[13]. Y.K. Ramadass, A.P. Chandrakasan, “An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor,” IEEE J. Solid-state Circuits, vol. 45, pp. 189-204, 2010.
[14]. P.-H. Chen, K. Ishida, X. Zhang, Y. Okuma, Y. Ryu, M. Takamiya, T. Sakurai, “A 80-mV input, fast startup dual-mode boost converter with charge-pumped pulse generator for energy harvesting,” in Proc. IEEE Asian Solid-State Circuits Conference, pp. 33-36, 2011.
[15]. J.-P. Im, S.-W. Wang, K.-H. Lee, Y.-J. Woo, Y.-S. Yuk, T.-H. Kong, S.-W. Hong, S.-T. Ryu, G.-H. Cho, “A 40mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting,” in Proc. IEEE international Solid-State Circuits Conference (ISSCC), pp.104-106, 2012.
[16]. E.J. Carlson, K. Strunz, B.P. Otis, “A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting,” IEEE J. Solid-State Circuits, vol.45, no.4, pp.741-750, 2010
[17]. K.W.R. Chew, Z. Sun, H. Tang, L. Siek, , “A 400nW single-inductor dual-input-tri-output DC-DC buck-boost converter with maximum power point tracking for indoor photovoltaic energy harvesting,” in Proc. IEEE Intenational. Solid-State Circuits Conference (ISSCC), pp.68-69, 2013
[18]. K.Z. Ahmed, S. Mukhopadhyay, “A Wide Conversion Ratio, Extended Input 3.5-μA Boost Regulator With 82% Efficiency for Low-Voltage Energy Harvesting,” IEEE Trans. Power Electronics, vol.29, no.9, pp.4776-4786, 2014
[19]. G. Palumbo, D. Pappalardo, M. Gaibotti, , “Charge pump with adaptive stages for non-volatile memories,” IEE Proc. Circuits, Devices and Systems, vol.153, no.2, pp.136-142, 2006
[20]. J. Kim, J.M. Kim, C. Kim, “Wide input range hybrid DC-DC conversion system for solar energy harvesting,” Electronics Letters, vol.48, no.1, pp.39-41, 2012
[21]. Power management, Analog Devices Inc. [Online]. Available: http://www.analog.com/library/analogdialogue/archives/43-09/edch%209%20power.pdf [April 2014]
[22]. M.-H. Huang, P.-C. Fan, K.-H. Chen, “Low-Ripple and Dual-Phase Charge Pump Circuit Regulated by Switched-Capacitor-Based Bandgap Reference,” IEEE Trans. Power Electronics, vol.24, no.5, pp.1161-1172, 2009
[23]. S. Lütkemeier, U. Ruckert, “A Subthreshold to Above-Threshold Level Shifter Comprising a Wilson Current Mirror,” IEEE Trans. Circuits and Systems II: Express Briefs, vol.57, no.9, pp.721-724, 2010
[24]. M. D. Seeman, “A Design Methodology for Switched-Capacitor DC-DC Converters,” EECS Department, University of California, Berkeley [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-78.html[May 2014]
[25]. P.-H. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, T. Sakurai,“Startup Techniques for 95 mV Step-Up Converter by Capacitor Pass-On Scheme and Vth-Tuned Oscillator With Fixed Charge Programming,” IEEE J. Solid-State Circuits, vol.47, no.5, pp.1252-1260, 2012
校內:2019-09-10公開