| 研究生: |
廖美儀 Liao, Mei-Yi |
|---|---|
| 論文名稱: |
介尺度奈米金屬氧化物之合成與性質研究 Synthesis and Characterization of metal-based nanomaterials |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 中孔洞材料 、氧化鋁 、揮發誘導自組裝 、光激發放光 、氧化鋅 、修飾 、有機矽烷 、鎳-碳複合材料 |
| 外文關鍵詞: | silane, evaporation-induced self-assemble, photoluminescence, ZnO, modification, aluminum oxide, Ni-C hybrid materials, mesoporous |
| 相關次數: | 點閱:111 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分為三大研究主題,第一個主題為製備中孔洞氧化矽材料,並經過表面修飾過程以達到應用的效能。第二個主題是以揮發誘導自組裝程序製備中孔洞金屬氧化物材料。第三個主題是以水熱法彽溫成長六角對稱氧化鋅奈米花(six-fold flower-like ZnO),此材料能產生綠光之陰極射線發光效應。
第一部分:直接表面修飾有機矽烷於中孔洞氧化矽材料
本研究的目標是發展簡便的反應流程,將各種有機矽烷直接表面修飾於初合成中孔洞氧化矽材料上,此方法有別於一般傳統表面修飾方式,在不需經過高溫煅燒移除界面活性劑,並免除繁瑣的真空除水流程,即可達到高效率表面修飾效果。我們將針對研究結果探討silica-surfactant間作用力對表面修飾的影響。
因為silica-surfactant彼此間作用力,主要取決於初合成中孔洞氧化矽材料的合成條件,中孔洞氧化矽材料合成環境於中性( )以及酸性( )底下,彼此間是以較弱的氫鍵鍵結,所以界面活性劑經silane表面修飾後被移除率幾乎高達100 %,反之當中孔洞氧化矽合成環境於鹼性條件下,silica與界面活性劑彼此間是採較強的靜電吸引力,直接進行表面修飾時,所需跨越的活化能較高,對於界面活性劑拔除能力相對的較差,即使是界面活性劑拔除能力較差,但有機矽烷表面修飾效果仍高達80 %以上。此外,利用改變作用力的想法,於鹼性條件下( )合成的中孔洞氧化矽材料,可先利用酸處理步驟將silica-surfactant間強靜電吸引力轉換成較弱的氫鍵作用形式,或者直接利用反應中會分解HCl的silane進行表面修飾,這些方式都可促使silane表面修飾效果幾乎高達100 %。
第二部分:ㄧ步合成金屬氧化物中孔洞材料
本研究重大突破是在大氣環境下利用揮發誘導自組裝方式,一步驟合成(one-step synthesis)具有高表面積介孔尺度的氧化鋁材料,利用揮發誘導自組裝概念(evaporation-induced self-assembly;EISA),將溶劑慢慢揮發誘導引發有機高分子-無機硝酸鋁鹽自組裝形成超分子結構,於400℃底下促使金屬氧化物結晶化並移除界面活性劑產生孔洞特性。經穿透式電子顯微鏡(TEM)觀察可看到明顯中孔洞結構,並且由氮氣吸附脫附等溫曲線分析結果得知,中孔洞氧化鋁材料具有高表面積約250-300 m2g-1以及均勻的孔洞大小,實驗結果除了展現高度再現性,也成功利用相似的方式(揮發誘導自組裝)製備出氧化鋯、氧化鈰中孔洞材料和多孔性之磁性碳材(鎳-碳複合材料)。
第三部分:綠光發光體之六角對稱氧化鋅奈米花
本研究利用水熱法合成六角對稱氧化鋅奈米花(six-fold flower-like ZnO),合成的方式是將硫酸鋅(Zn(SO¬4)•9H2O)與中性界面活性劑P123於1.0 M氨水溶液反應後得到白色沉澱物,經由SEM觀察為平板狀物質,收集沉澱物後在100℃氨水溶液中水熱處理,經水熱反應後得到具有結晶性的氧化鋅材料,由掃描式電子顯微鏡觀察下可發現氧化鋅晶體具有六角對稱,產物的純度經由XRD的判定高達100 %,此外,針對產物的光學特性我們使用光激發光光譜與陰極激發光光譜進行研究,雖然藉由調控加入界面活性劑的種類可改變產物的外型(陽離子型界面活性劑CTAB:放射狀;不加界面活性劑:柱狀),但其發光特性均是展現高的綠光/紫外光比值強度。
In this thesis, there are three major researching parts: 1. Synthesis and surface modification of the mesoporous silicas. 2. Preparation of mesoporous metal oxides by using evaporation-induced self-assemble (EISA) method. 3. Fabrication of six-fold flower-like ZnO nanoparticles via a simple sol-gel reaction.
Part I: Direct silane-modification of the mesoporous silicas:
A simple surface modification of the mesoporous silicas can be achieved by refluxing the as-synthesized mesoporous silicas in a silane ethanolic solution. Different form the typical silane-grafting methods; the time- and energy-consuming procedures including calcination and water-preventing can be avoided and hence the surface of the mesopores was efficiently modified with different silanes.
The extent of silane-modification is dependent on the interaction strength between silica and surfactant. Due to the relatively weak hydrogen-bonding interaction in the acid-made mesoporous silicas (S+X-I0, S0I0), the surfactant was almost competently replaced by the chemical-bonding silanes. In contrast, the extent of surface modification for the base-made mesoporous silica with strong electrostatic interaction of the surfactant and silica (S+I-) is reduced to 80 %. Accordingly, stronger silica-surfactant interactions lead to higher activation energy for the silane modification. In order to achieve a entire surface-modification for the based-made mesoporous silica, a treatment in the highly acidic solution or using a silane with the release of HCl was performed.
Part II. Preparation of mesoporous metal oxides by using one-step EISA method:
Under ambient condition, the mesoporous aluminum oxide can be prepared via a simple EISA method. In the EISA synthetic method, the solvent of the solution of copolymer surfactant and aluminum nitrate salt was spontaneously evaporated to the environment, and the surfactant and aluminum salts was self-assembly into the mesostructures. After calcination at 400 oC, the mesoporous aluminum oxide was obtained. The mesostructures and porosity of the mesoporous aluminum oxide was characterized by TEM observation, N2 adsorption-desorption isotherm. The EISA method can be applied to prepare other mesoporous metal oxides such as ZrO2, CeO2 and Ni-C hybrid materials.
Part III. Fabrication of six-fold flower-like ZnO nanoparticles as green-light photoluminescence emitter:
In this study, a hydrothermal reaction was used to fabricate the symmetric six-fold flower-like ZnO nanoparticles. The typical synthetic procedure is described as followed: Add the solution of ZnSO4 and P123 dropwise to an ammonia solution to form a white gel solution. After centrifugation, white precipitate was obtained. This Zn complex precursor is palate-like. Combining with a proper amount of ammonia solution, the palate-like Zn complex was gradually transformed to ZnO nanoparticles during the hydrothermal treatment at 100 oC. The morphology of ZnO nanoparticles is dependent on the added surfactant and surfactant concentration. With a well control on the P123 surfactant content, the symmetric six-fold flower-like ZnO nanoparticles with crystalline purity close to 100 % were generated. In the presence of the cationic surfactant, ZnO particle is radio-like. The prism-like ZnO particles were formed in the absence of surfactant. These ZnO particles possess high photoluminescence especially in the green-yellow region. The photoluminescence spectra of these ZnO particles are independent on the morphology.
(1). C. T. Kresge, M. E. Leonowicz, Nature 1992, 359, 710.
(2). J. S. Beck, J. C. Vartuli, W. J. Roth, J. Am. Chem. Soc. 1992, 114, 10834.
(3). C. G. Wu, T. Bein, Science 1994, 264, 1757.
(4). H. P. Lin, C.Y. Mou, Science 1996, 273, 765.
(5). P. Shen, Y. Y. Fahn, A. C. Su, Nano Letters, 2001, 1, 299-303.
(6). D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
(7). J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr. 1986, 532, 3.
(8). W. Wang, S. Xie, W. Zhou, A. Sayari, Chem. Mater. 2004, Received February 11.
(9).J. Fan, C. Yu, F. Gao, J. Lei, B. Yian, L. Wang, Q. Luo, D. Zhao, Angew. Chem. 2003, 115, 3254.
(10). A. E. Garcia – Bennett, S. Williamsin, P. A. Wright, I. J. Shannon, J. Meter. Chem, 2002, 12, 3533.
(11). A. Vinu, V. Murugesan, M. Hartmann, Chem. Meter. 2003, 15, 1385.
(12). H. P. Lin, C. Y. Tang, C. Y. Lin, J. Chin. Chem. Soc. 2002, 49, 981.
(13). V. Alfredsson, M. W. Anderson, Chem. Mater. 1996, 8, 1141.
(14). H. P. Lin, C. Y. Mou, Acc. Chem. Rev. 2002, 35, 927.
(15). Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147.
(16). S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson, A. Monnier, Chem. Mater., 2001, 13, 2247.
(17). J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E.. Park, G. D. Stucky, J. Phys. Chem. B., 2002, 106, 2552.
(18). Z. Zhang, Y. Han, F. S. Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao, Y. Wei, J. Am. Chem. Soc., 2001, 123, 5014.
(19). A. Bhaumik, S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691.
(20). Y. Han, S. Wu, Y. Sun, D. Li, F. S. Xiao, Chem. Mater., 2002, 14, 1144.
(21). Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao, F. S. Xiao, Angew. Chem. Int. Ed. 2001, 7, 1258.
(22). Y. Han, F. S. Xiao, S. Wu, Y. Sun, X. Meng, D. Li, S. Lin, J. Phys. Chem. B, 2001, 105, 7963.
(23). D. Margolese, J. A. Melero, C. Christiansen, B. F. Chemelka, G. D. Stukey, Chem. Mater. 2002, 12, 2448.
(24). A. Walcarius, M. Etienne, B. Lebeau, Chem. Mater. 2003, 15, 2161.
(25). T. Yokoi, H. Yoshitake, T. Tatsumi, J. Mater. Chem. 2004, 14, 951.
(26). J. M. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature 2000, 48, 289.
(27). E. B. Erlein, Angew. Chem. Int. Ed. 2003, 42, 614.
(28). Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. Xu, Angew. Chem. Int. Ed. 2003, 42, 413.
(29). F. Noll, M. Sumper, N. Hampp, Nano. Lett. 2002, 2, 91.
(30). S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392.
(31). N. Kröger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129.
(32). E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed. 2002, 41, 1543 .
(33). T. F. Todros, Surfactants, Academic Press : London, 1984.
(34). C. J. Brinker, Curr. Opin. Solid State. Mater. Sci. 1996, 1, 798.
(35). G. D. Stucky, Q. Huo, A. Firouzi, B. F. Chmelka, S. Schacht, I. G. Voigt-Martin, F. Schuth in Progress in Zeolite and Microporous Materials, Studies in Surface Science and Catalysis, Vol. 105, Elsevier, Amsterdam, 1997, 3.
(36). N. K. Raman, M. T. Anderson, C. J. Brinker, Chem. Mater. 1996, 8, 1682.
(37). D. M. Antonelli, J. Y. Ying, Curr. Opin. Coll. Interf. Sci. 1996, 1, 523.
(38). P. Behrens, Angew. Chem. Int. Ed. Engl. 1996, 35, 515.
(39). X. S. Zhao, G. Q. Lu, G. J. Millar, Ind. Eng. Chem. 1996, 35, 2075.
(40). A. Sayari, Chem. Mater. 1996, 8, 1840.
(41). J. Y. Ying, C. P. Mehnert, M. S. Wong, Angew. Chem. Int. Ed. 1999, 38, 56.
(42). K. G. Severin, T. M. Abdel-Fattah, T. J. Pinnavaia, Chem. Commun. 1998 1471.
(43). Q. Huo, D. I. Margolese, U. Ciesla, Dirk G. Demuth, Pingyun Feng, Thurman E. Gier, Peter Sieger, Ali Firouzi, Bradley F. Chmelka, Ferdi Schuth, Galen D. Stucky, Chem. Mater. 1994, 6, 1176.
(44). L. Sepulveda, J. Cortes, American Chemical Society 1985, 89, 5322.
(45). R. Zanza, Aqueous surfactant-alochol systems : a review Adv Colloid Interface Sci. 1995, 57.
(46). C. J. Liu, W. Y. Yu, S. G. Li, C. M. Che, J. Org. Chem. 1998, 63, 7364.
(47). P. Sutra, D. Brunel, Chem. Commun. 1996, 2485.
(48). J. F. Diaz, K. B. Jr, Chem. Commun. 1997, 9, 61.
(49). W. A. Caralho, J of Molecular Catalysis A:Chemical 1999, 144, 91.
(50). J. Liu, X. Feng, G. E. Fryxell, L. Wang, A. Y. Kim, M. L. Gong, Adv. Mater. 1998, 10, 161.
(51). W. M. Van Rhijn, D. E. De Vos, B. F. Sels, W. M. Bossaert, P. A. Jacobs, Chem. Commun. 1998, 317.
(52). R. Langer, Science 1990, 249, 1527.
(53). (a)Y. Sun, B. Mayers, Y. Xia, Nano. Lett. 2002, 2, 481. (b) Y. Xia, Y. Sum, Nano. Lett. 2003, 3, 1569. (c) Y. Sun, B. Mayers, Y. Xia, Adv. Mater. 2003, 15, 641.
(54). Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science 2004, 304, 711.
(55). (a) J. S. Hrkach, M. T. Peracchia, A. Domb, N. Lotan, R. Langer, Biomaterials 1997, 18, 27. (b) B. Jeong, Y. K. Choi, Y. H. Bae, G. Zentner, S. W. Kim, J Control Rel 1999, 62, 109. (a) C. H. Wang, K. R. Fan, G. H. Hsiue, Biomaterials. 2005, 26, 2803.
(56). (a) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710. (b) J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, J. Am. Chem. Soc. 1992, 114, 10834.
(57). M. Vallet-Regi, A. Ra´mila, R. P. del Real, J. Pe´rez-Pariente, Chem. Mater. 2001, 13, 308.
(58). S. Giri, B. G. Trewyn, M. P. Stellmaker, V. S. Y. Lin, Angew. Chem. Int. Ed. 2005, 44, 5038.
(59). Y. S. Lin, Y. Hung, J. K. Su, R, Lee, C. Chang, M. L. Lin, C. Y. Mou, J. Phys. Chem. B 2004, 108, 15608.
(60). Y. S. Lin, P. Tsai, H. Y. Huang, C. T. Kuo, Y. Hung, D. M. Huang, Y. C. Chen, C. Y. Mou, Chem. Mater. 2005, 17, 4570.
(61). R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B 1999, 103, 7743.
(62). Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, D. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053.
(63). Y. F. Lu, R.Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. L. Gong, Y. X. Guo, H. Soyez, B. Dunn, M. H. Huang, J. I. Zink, Nature 1997, 389, 364.
(64). S. L. Burkett, S. M. Sims, S. Mann, Chem. Commun. 1996, 1367.
(65). C. E. Fowler, S. L. Burkett, S. Mann, Chem. Commun. 1997, 1769.
(66). D. J. Macquarrie, Chem. Commun. 1996, 1961.
(67). M. H. Lim, C. F. Blanford, A. Stein, J. Am. Chem. Soc. 1997, 119, 4090.
(68). M. H. Lim, C. F. Blanford, A. Stein, Chem. Mater. 1998, 10, 467.
(69). C. M. Banbrough, R. C. T. Slade, R. T. Williams, J. Mater. Chem 1998, 8, 569.
(70). B. Antonio, M. Fuertes, Rapid Commun. 2005, 26, 1055.
(71). C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710.
(72). D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
(73). G. J. de A. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 2002, 102, 4093.
(74). K. K. Zhu, B. Yue, W. Z. Zhou, H. Y. He, Chem. Commun. 2003, 98.
(75). B. Yue, H. Tang, Z. Kong, K. Zhu, C. Dickinson, W. Z. Zhou, H. He, Chem. Phys. Lett. 2005, 407, 83.
(76). K. Jiao, B. Zhang, B. Yue, Y. Ren, S. Liu, S. Yan, C. Dickinson, W. Zhou, H. He, Chem. Commun. 2005, 5618–5620.
(77). S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 2000, 122, 10712.
(78). W. C. Li, A. H. Lu, C. Weidenthaler, F. Schüth, Chem. Mater. 2004, 16, 5676-5681.
(79). Q S. Huo, D. I. Margolese, U. Ciesla, Chem Mater. 1994, 6, 1176.
(80). C. Serre, M. Hervieu, C. Mzgnier, Chem Mater. 2002, 14, 180.
(81). Soler-Illia, G. J. de A. A. Louis, A, C. Sanchez, Chem Mater. 2002, 14, 750.
(82). P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Chem. Mater. 1999, 11, 2813.
(83). T. Brezesinski, M. Groenewolt, M. Antonietti, B. Smarsly, Angew. Chem. Int. Ed. 2006, 45, 781.
(84). J. Cejka, Appl. Catal. A. 2003, 254, 327.
(85). F. Vaudry, S. Khodabandeh, M. E. Davis, Chem. Mater., 1996, 8, 1451.
(86). (a) M. Yada, H. Kitamura, M. Machida, T. Kijima, Langmuir 1997, 13, 5252; (b) M. Yada, H. Hiyoshi, K. Ohe, M. Machida, T. Kijima, Inorg. Chem. 1997, 36, 5565.
(87). S. Cabrera, E. Haskouri, J. Alamo, A. Beltran, D. Beltran, S. Mendioroz, M. D. Marcos, P. Amoros, Adv. Mater. 1999, 11, 379.
(88). (a) S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science 1995, 269, 1242; (b) S. A. Bagshaw, T. J. Pinnavaia, Angew. Chem, Int. Ed. Engl., 1996, 35, 1102.
(89). W. Zhang, T. J. Pinnavaia, Chem. Commun., 1998, 35, 1185.
(90). (a) P. Yang, D.Zhao, D. I.Margolese, B.F.Chmelka, G. D. Stucky, Nature 1998, 396, 152; (b) P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Chem. Mater. 1999, 11, 2813.
(91). G. J. de A. A, Soler-Illia, A. Louis, C. Sanchez, Chem. Mater. 2002, 14, 750.
(92). C. J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv. Mater. 1999, 11, 7.
(93). T. Kimura, Chem. Mater. 2005, 17, 5521.
(94). A. J. Downs, Chemistry of Aluminium, Gallium, Indium and Thallium; Blackie Academic & Professional: London, 1993, 285.
(95). H. Darmstadt, C. Roy, S. Kaliaguine, T. W. Kim, R. Ryoo, Chem. Mater. 2003, 15, 3300.
(96). M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Scienc 2001, 292, 1897.
(97). Y. Chen, D. Bagnall, T. Yao, Mater. Sci. Eng. B 2000, 75, 190.
(98). N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, Adv. Mater. 2002, 14, 418.
(99). S. Liang, H. Sheng, Y. Liu, Z. Hio, Y. Lu, H. Shen, J. Cryst. Growth. 2001, 225, 110.
(100). J. Y. Lee, Y. S. Choi, J. H. Kim, M. O. Park, S. Im, Thin Solid Films 2002, 403, 553.
(101). M. H. Koch, P. Y. Timbrell, R. N. Lamb, Semicond. Sci. Technol 1995, 10, 1523.
(102). (a) N. Golego, S. A. Studenikin, M. Cocivera, J. Electrochem. Soc. 2000, 147, 1592. (b) M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 2005, 4, 455.
(103). D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, Appl. Phys. Lett. 1997, 70, 2230.
(104). P. Zu, Z. K. Tang, G. K. L Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 1997, 103, 459.
(105). H. Co, J. Y. Xu, E. W. Seelig, R. P. H. Chang, Appl. Phys. Lett. 2000, 76, 2997.
(106). M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 2001, 292, 1897.
(107). M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 2001, 292, 1897.
(108). H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, Science 2003, 300, 1249.
(109). Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001, 291, 1947.
(110). Z. L. Wang, Nanostructures of zinc oxide, materials today 2004, 24.
(111). W. I. Park, D. H. Kim, S. W. Jung, G. C. Yia, Appl. Phys. Lett. 2002, 80, 4232.
(112). B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Appl. Phys. Lett. 2004, 84, 4098.
(113). M. Hawley, I. D. Raistrick, J. G. Beery, R. J. Houlton, Science 1991, 251, 1587.
(114). X. Zhou, S. Chen, D. Zhang, X. Guo, W. Ding, Y. Chen, Langmuir 2006, 22, 1383.
(115). J. Ge, B. Tang, L. Zhuo, Z. Shi, Nanotechnology 2006, 17, 1316–1322.
(116). X. P. Gao, Z. F. Zheng, H. Y. Zhu, G. L. Pan, J. L. Bao, F. Wu, D. Y. Song, Chem. Commun. 2004, 1428.
(117). P. Li, Y. Wei, H. Liu, X. Wang, Chem. Commun. 2004, 2856.
(118). H. Zhang, D. Yang, S. Li, X. Ma, Y. Ji, J. Xu, D. Que, Materials Letters 2005, 59, 1696.
(119). J. C. Yu, A. Xu, L. Zhang, R. Song, L. Wu, J. Phys. Chem. B 2004, 108, 64.
(120). Hui Zhang, Deren Yang, Xiangyang Ma, Yujie Ji, Jin Xu and Duanlin Que, Nanotechnology 2004, 15, 622.
(121). K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys. 1996, 79, 7983.
(122). B. Cheng, W. Shi, J. M. Russell-Tanner, L. Zhang, E. T. Samulski, Inorganic Chemistry 2006, 45, 1208.
(123). R. Ryoo, S. H. Joo and S. Jun, J. Phys. Chem. B 1999, 103, 7743.
(124). Huo Q S, Margolese D I Ciesla U, Chem Mater, 1994, 6, 117.
(125). Avelino Corma, Chem. Rev. 1997, 97, 2373.
(126). Tatsuo Kimura, Chem. Mater. 2005, 17, 5521.
(127). Carlos R., Rambo and Heino Sieber, Adv. Mater. 2005, 17, 1088.
(128). Krisztian Niesz, Peidong Yang and Gabor A. Somorjai, Chem. Commun. 2005, 1986.