| 研究生: |
王伯彰 Wang, Po-Cheng |
|---|---|
| 論文名稱: |
探討以「聚甲基丙烯酸甲酯」為介電材質之有機薄膜電晶體的特性 Study of the characteristics of Pentacene-OTFTs with PMMA as dielectric layer |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 五環素 、有機薄膜電晶體 、聚甲基丙烯酸甲酯 |
| 外文關鍵詞: | Pentacene, PMMA, Organic thin-film transistors, OTFTs |
| 相關次數: | 點閱:113 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機薄膜式電晶體是近年來被廣泛研究的電子元件。他具有低成本以及低製程溫度的優點,這些優點使得它可以選擇使用不同種類的基板,甚至可以成長在可撓式的基板上。同時有機薄膜電晶體也可以和有機發光二極體整合當作有機發光二極體顯示器的驅動元件。
本論文主要著重於期許使用高分子材料「聚甲基丙烯酸甲酯」取代二氧化矽,探討其元件特性。
第一部分是關於高分子材料「聚甲基丙烯酸甲酯」特性研究。了其此材料的介電值,及膜厚。
第二部份是關於不同厚度之Pentacene的差異性。並且設定之後實驗有機層之最佳厚度。
第三部分是關於分別使用以二氧化矽及高分子材料「聚甲基丙烯酸甲酯」作為有機薄膜電晶體之絕緣層,並且分析其元件特性。
第四部分是藉由幾種量測方式,進而分析元件特性之差異性與介電材料不同之關聯性。
在這個研究當中,成功利用高分子材料作為有機薄膜電晶體之絕緣層,最大載子遷移率為0.241 cm2 /V.s。同時,在未來有機會發展成可撓式元件。
Thin film transistors (TFTs) based on conjugated organic materials, both small molecules and polymers have emerged recently due to their potential in low-cost, low-temperature fabrication and, the possibility of producing flexible devices. Several groups have proposed or reported successful integration of such devices with organic light-emitting diodes.
In our study, we investigated the dielectric layer of pentacene-OTFTs using PMMA of polymer material to replace conventions device with SiO2. The characteristic of pentacene-OTFTs with PMMA dielectric layer was also studied.
In the first part, we observed that the characteristics of PMMA were the same as the dielectric layer. The major property of PMMA was about dielectric constant and thickness.
In the second part, we investigated the characteristics of pentacene-OTFTs dependence of different thickness. The optimum thickness of pentacene-OTFTs in my experiment was found.
In the third part, we study the characteristics of Pentacene-OTFTs insulator layer using PMMA and SiO2. The performance of the device in my experiment was investigated.
In the final part, we analyze the difference of characteristics of device with different materials of dielectric layer.
In this study, the pentacene organic thin-film transistor with PMMA as insulator was fabricated successfully. The maximum saturation field-effect mobility was 0.241 cm2 /Vs. In the future, flexible device by using PMMA can be tried and fabricated.
[1] J. E. Lilienfeld, US Patent 1745 175,1930
[2] D. Kahng, M. M. Atalla, IRE Solid-State Devices Research Conference,Carnegie Institute of Technology, Pittsburgh, PA (1960).
[3] D. F. Barbe, C. R. Westgate, J. Phys. Chem. Solids, Vol. 31, pp. 2679, 1970.
[4] M. L. Petrova, L. D. Rozenshtein, Fiz. Tverd. Tela, Sov. Phys.-Solid State, Vol. 12,
pp. 961, 1970.
[5] F. Ebisawa, T. Kurokawa, S. Nara, “Electrical properties of polyacetylene/polsiloxane interface”, J. Appl. Phys., Vol. 54, pp. 3255, 1983.
[6] C. D. Dimitrakopoulos, D. J. Mascaro, “Organic thin-film transistors: A review of
recent advances”, IBM J. RES. & DEV., Vol. 45 No.1 2001
[7] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices., Cambridge University Press, New York, pp. 11, 1998.
[8] K. Schleupen, P. Alt, P. Andry, S. Asaad, E. Colgan, P. Fryer, E. Galligan, W. Graham, P. Greier, R. Horton, H. Ifill, R. John, R. Kaufman, H. Kinoshita, H. Kitahara, M. Kodate, A. Lanzetta, K. Latzko, S. Libertini, F. Libsch, A. Lien, M. Mastro, S. Millman, R. Nunes, R. Nywening, R. Polastre, J. Ritsko, M. Rothwell,
S. Takasugi, K. Warren, J. Wilson, R. Wisnieff, S. Wright, and C. Yue, “High Information Content Color 16.30 Desktop AMLCD with 15.7 Million a-Si:H TFTs,” Proceedings of the 18th International Display Research Conference, Asia Display ’98, pp. 187–190, 1998.
[9] W. Riess, H. Riel, T. Beierlein, W. Bru¨tting, P. Mu¨ller, and P. F. Seidler, “ Influence of Trapped and Interfacial Charges in Organic Multilayer Light-Emitting Devices,” IBM J. Res. & Dev., Vol. 45, pp. 77, 2001.
[10] R. Friend, J. Burroughes, and T. Shimoda, “Polymer Diodes”, Phys. World (UK),
Vol. 12, pp. 35, 1999.
[11] R. Wisnieff, “Printing Screens”, Nature , Vol. 394, pp. 225, 1998.
[12] B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An Electrophoretic
Ink for All-Printed Reflective Electronic Displays”, Nature , Vol. 394, pp. 253, 1998.
[13] N. K. Sheridon, U.S. Patent 4,126,854, 1978.
[14] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular Electronic Device: Field-Effect Transistor with a Polythiophene Thin-Film”, Appl. Phys. Lett., Vol. 49, pp. 1210–1212, 1986.
[15] J. H. Burroughes, C. A. Jones, and R. H. Friend, ”New semiconductor device physics in polymer diodes and transistors”, Nature, Vol. 335, pp. 137–141, 1988.
[16] G. Horowitz, D. Fichou, X. Peng, Z. Xu, and F. Garnier, Solid State 30 Commun.,
Vol. 72, pp. 381–384, 1989.
[17] F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, “All-Polymer Field-Effect Transistor Realized by Printing Techniques”, Science, Vol. 265, pp. 1684–1686, 1994.
[18] J. G. Laquindanum, H. E. Katz, A. J. Lovinger, and A. Dodabalapur, “Morphological
Origin of High Mobility in Pentacene Thin-Film Transistors”, Chem. Mater., Vol. 8,
pp. 2542–2544, 1996.
[19] J. Zhang, J. Wang, H. Wang and D. Yan, “ Organic thin-film transistors in sandwich
Configuration”, Appl. Phys. Lett., Vol. 84, pp. 142, 2004.
[20] J. Yuan, J. Zhang, J. Wang, X. Yan and D. Yan, “ Bottom-contact organic field-effect
transistors having low-dielectric layer under source and drain electrodes”, Appl. Phys.
Lett., Vol. 82, pp. 3967, 2003.
[21] Z. Bao, A. J. Lovinger and A. Dodabalapur, “ Organic Field-effect transistors with
high mobility based on copper phthalocyanine”, Appl. Phys. Lett., Vol. 69, pp. 3066,
1996.
[22] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, “High
Performance Organic Thin Film Transistors”, Mater. Res. Soc. Symp. Proc., Vol. 771,
pp. 169, 2003.
[23] Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Pentacene-based organic
thin-film transistors”, IEEE Trans. Electron Dev., Vol. 44, pp. 1325, 1997.
[24] H. E. Katz, “Organic molecular solids as thin film semiconductors”, J. Mater. Chem.,
Vol. 7, pp. 369, 1997.
[25] S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, and Won Keun Kim,
“High-Performance Polymer TFTs Printed on a Plastic Substrate”, IEEE Trans.
Electron Dev., Vol. 49, pp. 2008, 2002.
[26] Z. L.Li, S. C. Yang, H, F. Meng, Y. S. Chen, Y. Z. Yang, C. H. Liu, S. F. Horng, C. S.
Hsu, L. C. Chen, J. P. Hu and R. H. Lee, “ Patterning-free integration of polymer
light-emitting diode and polymer transistor” ,Appl. Phys. Lett.,Vol. 84, pp. 3558,
2004.
[27] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices
Based on Conjugated Polymers”, Science, Vol. 280, pp. 1741, 1998.
[28] Z. Bao, A. Dodabalapur and A. J. Lovinger, “ Soluble and processable regioregular
poly(3-hexylthiophene) for thin film field-effect transistor applications with high
mobility”, Appl. Phys. Lett., Vol. 69, pp. 4108, 1996.
[29] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O.
Graham, A. Curioni and W. Andreoni,” N-type organic thin-film transistor with high
field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic
diimide derivative”, Appl. Phys. Lett., Vol. 80, pp. 2517, 2002.
[30] H. E. Katz, J. Johnson, A. J. Lovinger, and W. LiKatz, “Naphthalenetetracarboxylic
Diimide-Based n-Channel Transistor Semiconductors: Structural Variation and
Thiol-Enhanced Gold Contacts”, J. Am. Chem. Soc., Vol. 122, pp. 7787, 2000.
[31] J. G. Laquindanum, H. E. Katz, A. Dodabalapur and A. J. Lovinger, “n-channel
organic transistor materials based on naphthalene frameworks”, J. Am. Chem. Soc.,
Vol.118, pp. 11331, 1996.
[32] Faschetti, A., et al., Mater. Res. Soc. Symp. Proc., Vol. 369, pp. 735, 2003.
[33] Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film
Transistors”, J. Am. Chem. Soc.,Vol.120 (1), pp. 207(1998)
[34] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, “High
Performance Organic Thin Film Transistors”, Mater. Res. Soc. Symp. Proc., Vol. 771,
pp. 169, 2003.
[35] D. Knipp, R. A. Street, A. Völkel, and J. Ho, ”Pentacene thin film transistors on
inorganic dielectric: Morphology, structural properties, and electronic transport”, J.
Appl. Phys. Vo. 93, pp. 347, 2003.
[36] L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, and H. E. Katz,
Science Vo. 272, pp. 1462, 1996.
[37] M. H. Choo, J. H. Kim, and S. Im, “ Hole transport in amorphous-crystalline-mixed
and amorphous pentacene thin-film transistors”,Appl. Phys. Lett. Vo. 81, pp. 4640,
2002.
[38] C. D. Dimitrakopoulos,a) A. R. Brown, and A. Pomp, “ Molecular beam deposited
thin films of pentacene for organic field effect transistor applications”, J. Appl. Phys.,
Vol. 80, pp. 15 1996.