簡易檢索 / 詳目顯示

研究生: 連偉成
Lian, Wei-Cheng
論文名稱: 台灣南部海域海底山崩引發海嘯對核三廠影響之模擬
Numerical Simulation of Tsunami Generation by Submarine Landslide off Southern Taiwan on the Maanshan Nuclear Power Plant
指導教授: 蕭士俊
Hsiao, Shih-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 69
中文關鍵詞: 海嘯海底山崩數值模式崩移物初始加速度
外文關鍵詞: tsunami, submarine landslide, numerical model, initial acceleration
相關次數: 點閱:257下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣藉著海洋的便利與資源,於沿岸建立了許多城市與重要設施,核能發電廠因降溫需求,多將廠址設於海岸鄰近區域,然而卻因此面臨海洋災害的威脅,如:海嘯,其中由海底山崩所引發之海嘯尚缺乏足夠的了解,因此為了避免重大損失,必須更加了解其特性,以尋求應對之道。
    本研究使用二維淺水波數值模式(COMCOT)模擬核三廠於海底山崩引致之海嘯侵襲下的水體運動,研究參考吳佳瑜(2008)以及Li et al (2015)之崩移物情境,探討台灣南部海域崩移潛勢情境之威脅,並確認能達到核三廠現行海嘯設計基準水位加6公尺所對應之情境條件,以掌握海嘯危害之情況;此外以一組情境分析海嘯生成階段,崩移物初始加速度對波浪生成的影響,同時觀察海嘯傳播階段之歷程,俾以掌握海底山崩造成之海嘯之特性。模式驗證部分,本研究以Lo and Liu (2017)提出之解析解來進行模式驗證,確認頻散效應存在的狀況下,COMCOT模擬結果之適用範圍。
    本研究採用一組海嘯情境進行海底崩移物之初始加速度敏感度分析。結果顯示,初始加速度之影響有空間上的不同。一般而言,初始加速度越大,波浪引起之最大水面高程越大,但增加幅度有限,亦即當初始加速度大於1.0 m/s^2後,最大水面高程的變化較小。本研究分析台灣南部海域之海底山崩潛勢區對於核三廠之影響性,目前分析之三處危害度較大之情境對於廠區之危害度不大。研究採用放大崩移物厚度的方式,藉以考慮更大的海嘯溢淹情境。結果顯示,將情境LS3(位於東南部海域之崩移情境)之崩移物厚度增為原本之7.1倍時,可達到核三廠現行海嘯設計基準水位加6公尺之結果。

    In Taiwan, most of the nuclear power plants are located near the coastal area, thus they are threatened by marine disasters such as tsunami. One of the tsunami generation types is the tsunami induced by submarine landslide which we are lacking sufficient understanding.
    In this research, a two-dimensional shallow water equations model (COMCOT) was used to simulate the tsunami waves induced by submarine landslides. And the influence of the tsunami waves on the Maanshan Nuclear Power Plant was investigated. We obtained the data of the landslide from Wu (2008) and Li et al. (2015). Besides, the influence of initial accelerations was investigated. In this research we validated the range of the capabilities of COMCOT for simulating the dispersion effect of tsunami waves.
    The results show that the effect of the initial acceleration is different in space. Generally, the tsunami wave height increases with the increase of the initial acceleration of submarine landslide, but the growth is limited. Three kinds of the submarine landslide for high hazard in offshore southern Taiwan were used to investigate the influence of the tsunami waves on the Maanshan nuclear power plant. The results show the hazard is small in the present study. To consider the run-up height up to the design value plus 6 meters for the Maanshan nuclear power plant, the thickness of the submarine landslides is increased. The results show the scenario LS3 with 7.1 times the original thickness could cause the desired run-up height.

    摘要 I 目錄 X 表目錄 XII 圖目錄 XIII 符號表 XVI 第一章 緒論 1 1-1 研究動機與目的 1 1-2 海底山崩之研究 2 1-3 台灣之海底山崩研究 5 1-4 本文架構 6 第二章 數學模式 7 2-1 二維數值模式(COMCOT) 7 2-1-1 模式簡介 7 2-1-2 COMCOT之控制方程式 8 2-1-3 有線差分法 9 2-1-4 移動邊界法 12 2-1-5 巢狀網格系統 14 2-1-6 頻散效應之改良 15 2-2 海底山崩之崩移物模型 16 第三章 研究方法 20 3-1 模式驗證 20 3-1-1解析解之崩移物形狀 21 3-1-2 驗證結果與討論 22 3-2 模式比較與討論 32 3-2-1 海底山崩情境模擬 32 3-2-2 海嘯波傳播過程 36 3-3 崩移物初始加速度之討論 38 3-3-1 最大水面高程分佈 38 3-3-2 初始加速度之影響 40 3-3-3初始加速度之合理性 42 3-4 海底山崩情境之模式設定 44 3-4-1 海底山崩情境 44 3-4-2 數值高程資料之建置 45 3-4-3模式參數設定 47 第四章 海底山崩情境對核三廠影響之模擬結果 48 4-1 海底山崩引致之海嘯對核三廠之衝擊 48 4-2 設計情境達到海嘯設計基準水位加6公尺 56 第五章 結論與建議 61 5-1結論 61 5-2建議 62 參考資料 63 附錄A 66 附錄B 69

    1. 呂佳柔(2015)臺灣西南海域高屏斜坡之海底崩移研究,國立中央大學地球科學研究所碩士論文。
    2. 吳佳瑜(2008)台灣南部海域海底崩移之分佈與特徵,國立台灣大學海洋研究所碩士論文。
    3. 張國棟、許明光、Liu, P. L. -F.、Woo, S. B. (1999)東台灣海嘯溢淹模擬,第21 屆海洋工程研討會論文集,418-424。
    4. 廖建明、吳祚任、葉錦勳、吳季莊(2014)台灣海域海底地滑所引致之海嘯探討,第36 屆海洋工程研討會論文集,477-482。
    5. Chen, W. Y., Yang, R. Y., Hwung, H. H. (2018). Frictional heating lubrication for submarine landslide. Terrestrial, Atmospheric and Oceanic Sciences, 29, 87–103.
    6. COMCOT User Manual (2009), Cornell University.
    7. Enet, F. and Grilli, S. T. (2007). Experimental study of tsunami generation by three-dimensional rigid underwater landslides. J. Waterw. Port Coastal Ocean Eng, 133(6), 442–454.
    8. Grilli, S. T. and Watts, P. (2005). Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity Analyses. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131, 283–297.
    9. Jiang, L. and LeBlond, P. (1994). Three-dimensional modeling of tsunami generation due to a submarine mudslide. J. Phys Ocean, 24, 559–572.
    10. Kawata, Y., Benson, B. C., Borrero, J. C., Borrero, J. L., Davies, H. L., Lange, W. P., Imamura, F., Letz, H., Nott, J., and Synolakis, C. E. ( 1999). Tsunami in Papua New Guinea was as intense as first thought, Eos Trans. AGU, 80( 9), 101– 105.
    11. Koshimura, S., Oie, T., Yanagisawa, H. and Imamura, F. (2009). Developing Fragility Functions for Tsunami Damage Estimation Using Numerical Model and Post-Tsunami Data from Banda Aceh, Indonesia. J. Coastal Engineering, 51( 3), 243–273.
    12. Kotani, M., Imamura, F. and Shuto, N. (1998). Tsunami run-up simulation and damage estimation by using geographical information system. Proc. Coastal Engineering, JSCE 45, 356–360 (in Japanese).
    13. Lander, James F. and National Geophysical Data Center. (1996). Tsunamis affecting Alaska, 1737-1996. Boulder, Colo : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center.
    14. Li, L.L., Switzer, A.D., Wang, Y., Weiss, R., Qiu, Q., Chan, C.-H. and Tapponnier, P. (2015). What caused the mysterious 18th century tsunami that struck the southwest Taiwan coast? J. Geosci. Res. Lett.
    15. Liu, Y., Shi, Y., Yuen, D. A., Sevre, E. O. D., Yuan, X., and Xing, H. L. (2009). Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea. Acta Geotechnica, 4(2), 129–137.
    16. Lo, H., and Liu, P. L. F. (2017). On the analytical solutions for water waves generated by a prescribed landslide. J. Fluid Mechanics,821, 85–116.
    17. Lucas, A., Mangeney, A., and Ampuero, J. P. (2014). Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nature communications. 5. 3417.
    18. Miller, D. J. (1960). The Alaska earthquake of July 10, 1958: giant wave in Lituya Bay. Bulletin of the Seismological Society of America, 50(2), 253–266.
    19. Muhari, A., Imamura, F., Arikawa, T., Hakim, A. and Afriyanto, B. (2018). Solving the Puzzle of the September 2018 Palu, Indonesia, Tsunami Mystery: Clues from the Tsunami Waveform and the Initial Field Survey Data. J. Disaster Research, 13, sc20181108.
    Murty, T. S. (1979), “Submarine slide-generated water waves in Kitimat Inlet, British
    Columbia”, J. Geophys. Res. 84(C12), 7777–7779.
    Murty, T. S. (1979), “Submarine slide-generated water waves in Kitimat Inlet, British
    Columbia”, J. Geophys. Res. 84(C12), 7777–7779.
    Murty, T. S. (1979), “Submarine slide-generated water waves in Kitimat Inlet, British
    Columbia”, J. Geophys. Res. 84(C12), 7777–7779.
    20. Murty, T. S. (1979). Submarine slide-generated water waves in Kitimat Inlet, British Columbia. J. Geophys. Res. 84(C12), 7777–7779.
    21. Rzadkiewicz, S. A., Mariotti, C. and Heinrich, P. (1997). Numerical simulation of submarine landslides and their hydraulic effects. J. Waterway Port Coast Ocean Eng, 123, 149–157.
    22. Satake, K., Smith, J. R. and Shinozaki, K. (2002). Three-dimensional reconstruction and tsunami model of the Nuuanu and Wailau giant landslides, Hawaii. Geophysical Monograph-American Geophysical Union, 128, 333–346.
    23. Soloviev, S. L. and Go, Ch. N. (1974). Catalogue of Tsunamis on the western shore of the Pacific Ocean: 1–447.
    24. Todorovska, M. I., Hayir, A. and Trifunac, M. D. (2003). Near-field amplitudes of tsunami from submarine slumps and slides. In Submarine Landslides and Tsunamis (pp. 59–68). Springer, Dordrecht.
    25. Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T., Kirby, J. T., Shi, F., Ma, G., Thingbaijam, K. K. S. and Mai, P. M. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? J. Mar Geol 357, 344–361.
    26. Varnes, D. J ., (1958) Landslide and Engineering Practice, Highway Research Board Special Report., 29, 2–47.
    27. Wang, X. M. and Liu, P. L. F. (2005). A numerical investigation of Boumerdes-Zemmouri (Algeria) earthquake and tsunami. Computer Modeling in Engineering and Sciences, 10 , 171–183.
    28. Wang, X. M. and Liu, P. L. F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. J. Hydraulic Research, 44 ,147–154.
    29. Watts, P. (1997). Water waves generated by underwater landslides , PhD thesis, California Inst. of Technol., Pasadena, CA.
    30. Watts, P. (1998). Wavemaker curves for tsunamis generated by underwater landslides. J. Waterway Port Coast Ocean Eng, ASCE, 124, 3, 127–137.
    31. Watts, P. and Grilli, S. T. (2003). Underwater landslide shape, motion, deformation, and tsunami generation. Proc. of the 13th Offshore and Polar Engrg. Conf., ISOPE, Honolulu, Hawaii, 3, 364–371.
    32. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J. and Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq Model and a fully nonlinear tsunami generation model. J. Nat. Hazards Earth Syst. Sci., 3, 391–402.

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE