| 研究生: |
劉浩君 Liu, Hao-juin |
|---|---|
| 論文名稱: |
自組裝單分子層技術結合微機電製程技術應用於蛋白質微陣列透明晶片之研究 Development of transparent protein microarray based on SAMs technique and MEMS processes |
| 指導教授: |
張凌昇
Jang, Ling-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 蛋白質微陣列晶片 、固定化技術 、自組裝單分子薄膜 、微機電 |
| 外文關鍵詞: | self-assembled monolayer, MEMS, protein microarray, immobilization technique |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質微陣列已成為蛋白質體學研究中的重要工具。蛋白質微陣列的優勢在於可同時進行大量分析,但所需成本較高、製作時間較久,故降低成本及縮短製程時間有其必要性。本研究的目的在於整合自組裝單分子層技術與微機電製程,製作一生醫檢測之蛋白質微陣列螢光檢測晶片。本研究主要分成兩個部分,第一部份是使用微機電製程在玻璃基材上製作蛋白質微陣列反應型晶片。另一部分即是微陣列玻璃基材的表面處理及蛋白質固定化技術。APTES (3-氨基丙基三甲氧基甲矽烷) 跟蛋白質A 被用來製作一連串的蛋白質固定化實驗。實驗開始於使用FITC 螢光標定與APTES 互相結合,觀察APTES在玻璃基材上的成膜效果。由於大部分傳統方法皆使用長時間浸泡法製作自組裝單分子層,本研究嘗試經由固定FITC 螢光標定之蛋白質A,改變反應時間跟溫度探討APTES成膜的反應機制。由螢光強度的實驗結果顯示,APTES 於反應時間4 分鐘以及反應溫度25 ℃即可與玻璃基材表面形成共價鍵結反應。另外,固定FITC 螢光標定之antimouse IgG是為了檢測蛋白質A 的活性。更進一步成功的建立了一套牛血清蛋白模組應用於臨床醫學檢測。本研究藉由測量親疏水角量測儀(contact angle goniometry)、原子力顯微鏡(atomic force microscopy, AFM)以及螢光顯微鏡之分析來瞭解基材表面被自組裝單分子層修飾及固定生物分子後的表面特性。此蛋白質微陣列螢光檢測晶片,解決了傳統生醫檢測系統過於龐大、成本昂貴的缺點,以實現Lab on a Chip 的理想。
Silicon has been extensively used as the primary material in the MEMS manufacturing process. However, it is not suitable for biomedical applications because of its long-term bio-toxicity and lack of opacity, which cause adverse effects and impair the analytical accuracy in a biological system. Therefore, there is an emerging need to develop fabrication techniques using proper materials for bio-analysis applications. The goal of the study is to fabricate protein chips by combining the techniques of MEMS and Self-Assemble monolayer. This work presents a fabrication process of protein chips based on glass substrate using APTES and protein A. The immobilization of APTES on glass substrate is demonstrated using fluorescein isothiocyanate (FITC). The effects of reaction temperature and time on silanization of APTES are investigated to elucidate the mechanism of APTES. The normalized fluorescent intensity indicates that a short period (4 min) of silanization at 25 ℃ suffices to form an APTES thin film. Additionally, a subsequent experiment on the immobilization of FITC-labeled antimouse IgG reveals favorable activation of the protein A. Moreover, rabbit anti-bovine albumin–BSA–sheep anti-bovine albumin that is conjugated with FITC, is used to establish a model for clinical medicine applications. The results demonstrate that APTES can be used to fabricate protein chips as a monolayer under silanization conditions of 4 min at 25 ℃.
[1] Kalim U. Mir, “Biochips: from chipped gels to microfluidic CDs”, Drug Discov. Today, 1998, vol.3, pp 485-486.
[2] Heng Zhu and Michael Snyder, “Protein arrays and microarrays”, Curr.Opin.Chem.Biol, 2001, vol.5, pp 40-45.
[3] Manju Gerard, Asha Chaubey and B. D. Malhotra, “Application of conducting polymers to biosensors”, Biosens.Bioelectron, 2002, vol.17, pp 345-359.
[4] BB Haab, MJ Dunham and PO Brown, “Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions” Genome Biol.2001, vol.2, pp 4.1–13.
[5] Gavin MacBeath and Stuart L. Schreiber, “Printing Proteins as Microarrays for High-Throughput Function Determination” Science 2000, vol.289, pp 1760–1763.
[6] Chia-Sheng Liao, Gwo-Bin Lee, Jiunn-Jong Wu, Chih-Ching Chang, Tsung-Min Hsieh, Fu-Chun Huang, Ching-Hsing Luo, “Micromachined Polymerase Chain Reaction System for Multiple DNA Amplification of Upper Respiratory Tract Infectious Diseases”, Biosensors and Bioelectronics, 2005, vol.20, pp 1341-1348 (SCI, EI).
[7] D. R. Reyes, D. Iossifidis, P. A. Auroux
and A. Manz, Micrototal analysis systems. 1. introduction, theory, and technology, Anal. Chem., 2002, vol.74, pp 2623–2636.
[8] Dev Kambhampati, Protein Microarray Technology, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp12-34 ,2004
[9] A. S. Blawas and W. M. Reichert, Protein patterning, Biomaterials, 1998, vol.19,
pp 595–609.
[10] E. Katz and I. Willner, “Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric
immunosensors, DNA-sensors, and enzyme biosensors”, Electroanalysis, 2003, vol.15,
pp 913–947.
[11] N. V. Zaytseva, V. N. Goral, R. A. Montagna and A. J. Baeumner, “Development of a microfluidic biosensor module for pathogen detection”, Lab Chip, 2005, vol.5, pp 805–811.
[12] H. Andersson and A. Van den Berg, Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities, Lab Chip, 2004, vol.4, pp 98–103.
[13] X. Jiang, D. A. Bruzewicz, A. P. Wong, M. Piel and G. M. Whitesides, Directing cell migration with asymmetric micropatterns, Proc. Natl. Acad. Sci. U. S. A., 2005, vol.102,
pp 975–978.
[14] N. Wang, E. Ostuni, G. M. Whitesides and D. E. Ingber, Micropatterning tractional forces in living cells, Cell Motil, Cytoskeleton, 2002, vol.52, pp 97–106.
[15] D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B.-H. Jo, “Functional Structures For Autonomous Flow Control Inside Microfluidic Channels”, Nature, 2000, vol.404, pp 588-590.
[16] R.J. Jackman, S.T.Brittain, A. Adams, M.G. Prentiss, G.M. Whitesides, “Design and Fabrication of Topologically Complex, Three-Dimensional Microstructures”, Science, 1998, vol.280, pp2089-2091.
[17] B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in
PolytLimethylsiloxane(PDMS) elastomer,” Journal of Microelectro- mechanical Systems, 2000,
vol. 9, pp. 76-8 1.
[18] T. L. Breen, J. Tien, S. R. J. Oliver, T. Hadzic, G. M., “Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays”, Whitesides: Science, vol. 284, 1999, pp. 948-951.
[19] H. G. Choi, B. K. Oh, W. H. Lee, J. W. Choi, “Deposition Behavior and Photoelectrochemical Characteristics of Chlorophyll a Langmuir-Blodgett Films”,Biotechnol. Bioprocess Eng., vol. 6 No. 3, 2001, pp. 183-188.
[20] K.M.R.Kallury, R.F.DeBono, U.J.Krull, M.Thompson, in: K.L.Mittal (Ed.), Silanes and Other Coupling Agents, VSP, Zeist, Netherlands, 1992, p.263-269.
[21] Abraham Ulman, “Formation and Structure
of Self-Assembled Monolayers”, Chem. Rev.,
1996, vol. 96, pp. 1533-1554.
[22] H. Neubert, E. S. Jacoby, S. S. Bansal,
R. K. lles, D. A. Cowan, and A. T. Kicman, ” Enhanced Affinity Capture MALDI-TOF MS: Orientation of an Immunoglobulin G Using Recombinant Protein G”, Anal. Chem. 2002, vol. 74, pp. 3677-3682.
[23] S. F. Chou, W. L. Hsu, J. M. Hwang, C. Y. Chen, ” Development of an immunosensor for
human ferritin, a nonspecific tumor marLer based on surface plasmon resonance”, Biosensors and Bioelectronics, 2004, vol. 19, pp. 999-1005.
[24] S. Susmel, C. K. O’Sullivan, G. G. Guilbault,“Human Cytomegalovirus Detection by
a Quartz Crystal Microbalance Immunosensor”, Enzyme and Microbial Technology, 2000,vol.27,
pp. 639-945
[25] M. Akram, M. C. Stuart, D. K.Y. Wong, “Direct application strategy to immobilise a thioctic acid self-assembled monolayer on a gold electrode”, Anal. Chem. Acta, 2004, vol. 504, pp. 243-251.
[26] T. Tanaka and T. Mastsunaga, “Fully Automated Chemiluminescence Immunoassay of Insulin Using Antibody-Protein A-Bacterial Magnetic Particle Complexes”, Anal. Chem, 2000, vol. 72, pp. 3518-3522.
[27] I. C. Goncalves, M. Cristina L. Martins,
M. A. Barbosa, B. D. Ratner, ” Protein adsorption on 18-alkyl chains immobilized on hydroxyl-terminated self-assembled monolayers”, Biomaterials, 2005, vol. 26, pp. 3891-3920.
[28] Miller, J. C., Bulter, E. B., Teh, B. S., and Haab, B. B. The application of protein microarrays to serum diagnostics: prostate
cancer as a test case. Disease Markers 2001,
17, 225–234.
[29] Service, R. F. Searching for recipes for protein chips. Science 2001, 294, 2080–2082.
[30] Wilson, D. S., and Nock, S. Functional protein microarrays. Curr. Opin. Chem. Biol. 2001, 6, 81–85.
[31] Boguslavsky, J. Protein chips still growing. Drug Discovery March 2001, S25–S26.
[32] B.B. Haab, M.J. Dunham, P.O. Brown, Genome Biol. 2001, 2, 4.1–13.
[33] G. MacBeath, S.L. Schreiber, Science 2000, 289, 1760–1763.
[34] T.O. Joos, M. Schrenk, P. Hopfl, K. Kroger, U. Chowdhury, D. Stoll, D. Schorner, M. Durr, K. Herick, S. Rupp et al., A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21 (2000), pp.
2641–2650.
[35] A. Ulman, Chem. Chem., Formation and Structure of Self-Assembled Monolayers Rev. 1996, 96, 1533-1554.
[36] Wang, C. C., Huang, R.-P., Sommer, M., Lisoukov, H., Huang, R., Lin, Y., Miller, Y., Miller, T., and Burke, J. Array-based multiplexed screening and quantification of human cytokines and chemokines. J. Proteome Res. 2002, 1, 337–343.
[37] Zhu, H., Bilgen, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M., and Snyder, M. Global analysis of protein activities using proteome chips. Science 2001, 293, 2101–2105.
[38] Zhu, H., Klemic, J. F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D., Gerstein, M., Reed, M. A., and Snyder, M. Analysis of yeast protein kinases using protein chips. Nature Genet. 2000, 26, 282–289.
[39] MacBeath, G., and Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760–1763.
[40] De Wildt, R., Mundy, C., Gorick, B., and Tomlinson, I. Antibody arrays for highthroughput screening of antibody-antigen interactions. Nature Biotechnol. 2000, 18, 989–994.
[41] Robinson, W. H., DiGennaro, C., Hueber, W., Haab, B. B., Kamachi, M., Dean, E. J., Fournel, S., Fong, D., Genovese, M. C., Neuman de Vegvar, N., Skriner, K., Hirschberg, D. L., Morris, R. I., Muller, S., Prujin, G. J., van Venrooij, W. J., Smolen, J. S., Brown, P. O., Steinman, L., and Utz, P. J. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nature Med. 2002, 8, 295–301.
[42] Zhu, H., Bilgen, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M., and Snyder, M. Global analysis of protein activities using proteome chips. Science 2001, 293, 2101–2105.
[43] MacBeath, G., and Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760–1763.
[44] Robinson, W. H., DiGennaro, C., Hueber, W., Haab, B. B., Kamachi, M., Dean, E. J., Fournel, S., Fong, D., Genovese, M. C., Neuman de Vegvar, N., Skriner, K., Hirschberg, D. L., Morris, R. I., Muller, S., Prujin, G. J., van Venrooij, W. J., Smolen, J. S., Brown, P. O., Steinman, L., and Utz, P. J. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nature Med. 2002, 8, 295–301.
[45] Rao, S. V., Anderson, K. W., and Bachas, L. G. Oriented immobilization of proteins. Mikrochim. Acta 1998, 128, 127–143.
[46] Seong, S.-Y. Microimmunoassay using a protein chip: optimizing conditions for protein immobilization. Clin. Diagn. Lab. Immunol. 2002, 9, 927–930.
[47] Williams, R. A., and Blanch, H. W. Covalent immobilization of protein monolayers for biosensor applications. Biosens. Bioelectron 1994, 9, 159–167.
[48] Butterfield, D. A., Bhattacharyya, D., Daunert, S., and Bachas, L. Catalytic biofunctional membranes containing site-specifically immobilized enzyme arrays: A
review. J. Membr. Sci. 2001, 181, 29–37.
[49] http://www.piercenet.com
[50] G. MacBeath, Nature Genet. 2002, 32, 526–532.
[51] Hanash, S., Protein microarrays and proteomics. Nature 2003, 422, 226–232.
[52] Stark, M.B., Holmberg, K, “Covalent immobilization of lipase in organic solvents”, Biotechnol.Bioeng, 1989, vol.34, pp. 942–950.
[53] Jae-Kwon Kim, Dong-Sik Shin, Woo-Jae Chung, Ki-Hoon Jang, Kook-Nyung Lee, Yong-Kweon Kim and Yoon-Sik Lee “Effects of polymer grafting on a glass surface for protein chip applications”, Colloids and Surfaces B: Biointerfaces, 2004, vol.33, pp. 67–75
[54] John A. Howarter and Jeffrey P. Youngblood, “Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane”, Langmuir, 2006, vol.22, pp.11142-11147
[55] P. Silberzan, L. Leger, D. Ausserre, and J. J. Benattar, “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers”, Langmuir, 1991, vol.7, pp. 1647-1651.
[56] Mark E. McGovern, Krishna M. R. Kallury,
and Michael Thompson,“Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane”, Langmuir, 1994, vol.10, pp. 3607-3614.