| 研究生: |
王奕翔 Wang, Yi-Hsiang |
|---|---|
| 論文名稱: |
室內及室外光能獵能器晶片設計 IC Design for Indoor and Outdoor Light Energy Harvesting |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 光能獵能 、光照快速變動 、最適合等效負載線 、最大功率追蹤 、暫態時間 、能量回收 、三開關雙路徑 、2P3S |
| 外文關鍵詞: | Light energy harvesting, fast-changing shading, adaptive load-line (ALL), maximum power point tracking, transient time, energy-recycling, dual-path 3-switch, 2P3S |
| 相關次數: | 點閱:98 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對室內及室外光能獵能晶片設計研究。
針對室外光能獵能晶片設計且獵能範圍在幾十毫瓦至各位數瓦的應用。本論文透過低複雜度最大功率追蹤演算法「最適合等效負載線(Adaptive Load-line, ALL)」使得結合光伏模組的移動式產品能快速並精準地追蹤並輸出最大功率。ALL 藉由併用擾動觀察法(perturb-and-observe, P&O) 及負載線斜率校正( load-line slope calibration, LSC)兩種技術達到高追縱效率及縮短暫態時間。本論文透過分析比較,發現在週期性光照快速變動下,ALL的追蹤效率遠優於傳統P&O。此晶片使用TSMC 0.5 μm 2P4M 5 V Mixed Signal CMOS製程,晶片大小約為3 mm2。實際量測結果顯示暫態響應為1.6 msec,追蹤效率高達99.9 %,功率轉換效率達94 %,功率密度則為168mW/mm2,兼具功率及體積最佳化設計,適用於移動式裝置。此外,結合ALL晶片及一些外部元件可組成一200 W的光能獵能系統,可同時達到高功率轉換效率(> 95 %)及高追縱效率(99.9 %)。
針對室內光能獵能晶片設計且獵能範圍在幾微瓦至百微瓦的應用。本論文透過一具能量回收技術的光能獵能系統管理光伏模組、電池與負載間的功率。此能量回收技術傳送獵取之光能至負載,再回收多餘能量至電池,如此在單電感雙輸入雙輸出的轉換器中可省去一電感分享之功率電晶體,因此本論文使用一透過恆定導通時間脈衝跳躍方式調變且操作於不連續導通模式之三開關雙路徑(2P3S)轉換器穩壓負載。在動態光伏模組及負載功率變動下,相較於現有文獻,此2P3S轉換器擁有較高的轉換效率並透過最佳化功率電晶體及恆定導通時間最大化整體效率。此晶片使用TSMC 0.5 μm 2P4M 5 V Mixed Signal CMOS製程,有效晶片面積為0.5 mm2,實際量測的控制器功耗為0.85 μA,在40 μW光伏模組輸出且負載功率範圍0 μW至20 mW下,擁有80.7 %至95.0 %轉換效率。與現有文獻比較,2P3S轉換器靜態光伏模組及負載功率變動下具有最高轉換效率,動態光伏模組及負載功率變動下則是在較高光伏模組輸出功率時有較高的轉換效率。
This dissertation focuses on indoor and outdoor light energy harvesting IC design.
To harvest outdoor light energy from tens of milliwatts to several watts, this dissertation uses a maximum power point tracking (MPPT) algorithm, adaptive load-line (ALL), that enables fast and accurate impedance matching with photovoltaic (PV) modules integrated within mobile devices. The proposed ALL incorporates perturb-and-observe (P&O) and load-line slope calibration (LSC) to achieve high MPPT efficiency and short transient time. This dissertation compares the loop response of the ALL and conventional P&O, and analyzes the power loss of MPP variation during the transient time under periodically changing irradiance. The MPPT efficiency can be obtained by estimating the power loss under different irradiance-changing periods, and the ALL has superior performance than conventional P&O. The energy harvesting circuit with the ALL is implemented in TSMC 0.5 μm 5 V CMOS process with a die area of 3 mm2. The measurement result shows that a transient time of 1.6 ms is achieved while simultaneously maintaining 99.9 % steady-state accuracy, even under fast-changing shading conditions; additionally, 94 % peak power conversion efficiency and 168 mW/mm2 power density are realized to fulfill the power- and volume-efficient requirements of mobile devices. Moreover, combining the ALL IC with a few discrete components can constitute a 200 W light energy harvesting system that simultaneously achieves high conversion efficiency (> 95 %) and maintains high steady-state accuracy (99.9 %).
To harvest indoor light energy from tens to hundreds of microwatts, this dissertation proposes an energy-recycling (ER) technique for power management among a PV module, battery, and load in light energy harvesting systems. The ER technique delivers all harvested PV energy directly to the load with surplus energy recycled from the load to the battery, and eliminates inductor-sharing power switches in single-inductor dual-input dual-output (SIDIDO) converters. Accordingly, the proposed dual-path 3-switch (2P3S) converter, which operates in discontinuous-conduction mode and regulates load voltage by constant-on-time pulse-skipping modulation, was developed. By comparing efficiencies of state-of-the-art SIDIDO converters under dynamic PV- and load-power profiles (PP & PL), the 2P3S converter’s advantageous applications are identified. The overall efficiency under static PP & PL and indirect-path efficiency under dynamic PP & PL are maximized by optimizing the switch sizes and on-time. The chip has three power switches and a controller employing low-power circuits, and is fabricated in 0.5 μm CMOS process with a 0.5 mm2 active area. The measured controller current is 0.85 μA. Under static PP & PL, and for a PP of 40 μW, the efficiency ranges from 80.7 % to 95.0 % for 0 μW to 20 mW load power. Compared with other state-of-the-arts, the 2P3S converter has the highest efficiency under static PP & PL and higher efficiency with more PV energy directly consumed by the load under dynamic PP & PL.
[1] European Photovoltaic Industry Association, EPIA
[2] A. T. Garelli, D. C. Mathew, T. W. Wilson, Jr., K. J. Hendren, P. K. Augenbergs, B. W. Degner, B. J. Hamel, M. A. Damlanakis, and P. Kessler, “Electronic device display module,” U.S. Patent 8 638 549, Jan. 28, 2014.
[3] M. N. Rosenblatt, B. Lyon, J. B. Filson, S. P. Hotelling, G. Cameron, and C. Frazier, “Integrated touch sensor and solar assembly,” U.S. Patent 8 368 654, Feb. 5, 2013.
[4] S. Liu and R. A. Dougal, “Dynamic multiphysics model for solar array,” IEEE Trans. Energy Convers., vol. 17, no. 2, pp. 285–294, Jun. 2002.
[5] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulating photovoltaic arrays,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1198–1208, May 2009.
[6] Z. Liang, R. Guo, J. Li, and A. Q. Huang, “A high-efficiency PV module integrated DC/DC converter for PV energy harvest in FREEDM systems,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 897–909, Mar. 2011.
[7] S. Uprety and H. Lee, “A 43V 400mW-to-21W global-search-based photovoltaic energy harvester with 350μs transient time, 99.9% MPPT efficiency, and 94% power efficiency,” in IEEE ISSCC Dig. Tech. Papers, pp. 404-405, Feb. 2014.
[8] S. Uprety and H. Lee, “A 93%-Power-Efficiency Photovoltaic Energy Harvester with Irradiance-Aware Auto-Reconfigurable MPPT Scheme Achieving >95% MPPT Efficiency Across 650μW to 1W and 2.9ms FOCV MPPT Transient Time,” in IEEE ISSCC Dig. Tech. Papers, 2017, pp. 378-379.
[9] Y. Qiu, C. Van Liempd, B. Op het Veld, P. G Blanken, and C. Van Hoof, “5μW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm,” in IEEE ISSCC Dig. Tech. Papers, pp. 118-119, Feb. 2011.
[10] R. Enne, M. Nikolic, and H. Zimmermann, “A maximum power-point tracker without digital signal processing in 0.35μm CMOS for automotive applications,” in IEEE ISSCC Dig. Tech. Papers, pp. 102-103, Feb. 2012.
[11] S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, Sep. 2012.
[12] H. Kim, S. Kim, C.-K. Kwon, Y.-J. Min, C. Kim, and S.-W. Kim, “An energy-efficient fast maximum power point tracking circuit in a 800-μW photovoltaic energy harvester,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2927–2935, Jun. 2013.
[13] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963–973, Jul. 2005.
[14] C.-Y. Yang, C.-Y. Hsieh, F.-K. Feng, and K.-H. Chen, “Highly efficient analog maximum power point tracking (AMPPT) in a photovoltaic system,” IEEE Trans. Circuits and Syst. I, Reg. Papers, vol. 59, no. 7, pp. 1546-1556, July 2012.
[15] T.-H. Tsai and K. Chen, “A 3.4mW photovoltaic energy-harvesting charger with integrated maximum power point tracking and battery management,” in IEEE ISSCC Dig. Tech. Papers, pp. 72-73, Feb. 2013.
[16] S.-B. Kjær, “Evaluation of the ‘Hill Climbing’ and the ‘Incremental Conductance’ maximum power point trackers for photovoltaic power systems,” IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 922–929, Dec. 2012.
[17] W.-C. Liu, Y.-H. Wang, and T.-H. Kuo, “An adaptive load-line tuning IC for photovoltaic module integrated mobile device with 470μs transient time, over 99% steady-state accuracy and 94% power conversion efficiency,” in IEEE ISSCC Dig. Tech. Papers, pp. 70-71, Feb. 2013.
[18] E. L. Meyer and E. D. van Dyk, “Assessing the reliability and degradation of photovoltaic module performance parameters”, IEEE Trans. Rel., vol. 53, no. 1, pp.83 -92, 2004.
[19] R. Pagano, M. Baker, and R. E. Radke, "A 0.18 μm monolithic Li-Ion battery charger for wireless devices based on partial current sensing and adaptive reference voltage," IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1355–1368, June 2012.
[20] T. Y. Man, P. K. T. Mok, and M. J. Chan, “A 0.9-V input discontinuous- conduction-mode boost converter with CMOS-control rectifier,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2036–2046, Sep. 2008.
[21] K. A. Kim, G. S. Seo, B. H. Cho and P. T. Krein, “A Dynamic Photovoltaic Model Incorporating Capacitive and Reverse-Bias Characteristics, “ IEEE J. Photovoltaics, vol. 3, no. 14, Oct. 2013
[22] S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. Wiley, New York, 2007
[23] R. A. Kumar, M. S. Suresh and J. Nagaraju, “ Measurement of AC Parameters of Gallium Arsenide (GaAs/Ge) Solar Cell by Impedance Spectroscopy, “ IEEE Trans. Electron. Devices, vol. 48, no. 9, Sep. 2001
[24] P. H. Mauk, H. Tavakolian and J. R. Sites, “Interpretation of thin-film polycrystalline solar cell capacitance, “ IEEE Trans. Electron. Devices, vol. 37, no. 2, Feb. 1990
[25] T. Esram, and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439-449, June 2007.
[26] Z. Liang, R. Guo, and A. Q. Huang, “A High Efficiency DC MIC for PV Energy Harvest in FREEDM Systems,” in IEEE Applied Power Electron. Conf., pp. 301-308, Feb. 2011.
[27] J. Huusari, and T. Suntio, “Dynamic Properties of Current-Fed Quadratic Full-Bridge Buck Converter for Distributed Photovoltaic MPP-Tracking Systems,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4681-4689, Nov. 2012.
[28] F. Zhang, K. Thanapalan, A. Procter, S. Carr, and J. Maddy, “Adaptive Hybrid Maximum Power Point Tracking Method for a Photovoltaic System,” IEEE Trans. Energy Convers., vol. 28, no. 2, pp. 353-360, June 2013.
[29] S.-M. Chen, T.-J. Liang, and K.-R. Hu, “Design, analysis, and implementation of solar power optimizer for dc distribution system,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1764-1772, Apr. 2013.
[30] R. J. M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders, and C. V. Hoof, “Energy harvesting for autonomous wireless sensor networks,” IEEE Solid-State Circuits Mag., vol. 2, no. 2, pp. 29-38, Spring 2010.
[31] Linear Technology, “300mA low voltage buck-boost converter with PowerPath and 1.6μA quiescent current,” LTC3106 datasheet, Nov. 2015.
[32] S. Stanzione, C. V. Liempd, R. V. Schaijk, Y. Naito, F. Yazicioglu, and C. V. Hoof, “A high voltage self-biased integrated DC-DC buck converter with fully analog MPPT algorithm for electrostatic energy harvesters,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3002-3010, Dec. 2013.
[33] Y. Nakase, S. Hirose, H. Onoda, Y. Ido, Y. Shimizu, T. Oishi, T. Kumamoto, and T. Shimizu, “0.5 V start-up 87% efficiency 0.75 mm² on-chip feed-forward single-inductor dual-output (SIDO) boost DC-DC converter for battery and solar cell operation sensor network micro-computer integration,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1933-1942, Aug. 2013.
[34] A. Shrivastava, Y. K. Ramadass, S. Khanna, S. Bartling, and B. H. Calhoun, “A 1.2μW SIMO energy harvesting and power management unit with constant peak inductor current control achieving 83-92% efficiency across wide input and output voltages,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1-2.
[35] S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199-2215, Sept. 2012.
[36] G. Yu, K. W. R. Chew, Z. C. Sun, H. Tang, and L. Siek, “A 400 nW single-inductor dual-input–tri-output DC–DC buck–boost converter with maximum power point tracking for indoor photovoltaic energy harvesting,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2758-2772, Nov. 2015.
[37] H. Shao, X. Li, C.-Y. Tsui, and W.-H. Ki, “A novel single-inductor dual-input dual-output DC-DC converter with PWM control for solar energy harvesting system,” IEEE Trans. Very Large Scale (VLSI) Syst., vol. 22, no. 8, pp. 1693-1704, Aug. 2014.
[38] S. Kim and G. A. Rincón-Mora, “Dual-source single-inductor 0.18μm CMOS charger-supply with nested hysteretic and adaptive on-time PWM control,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 400-401.
[39] R. D. Prabha and G. A. Rincón-Mora, “0.18-μm light-harvesting battery-assisted charger-supply CMOS system,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2950-2958, Apr. 2016.
[40] H.-J. Chen, Y.-H. Wang, P.-C. Huang, and T.-H. Kuo, “An energy-recycling three-switch single-inductor dual-input buck/boost DC-DC converter with 93% peak conversion efficiency and 0.5mm2 active area for light energy harvesting,” in IEEE ISSCC Dig. Tech. Papers, 2015, pp. 374-375.
[41] M. Chen, J. P. Vogt, and G. A. Rincón-Mora, “Design methodology of a hybrid micro-scale fuel cell-thin-film Lithium ion source,” in IEEE Int. Midwest Symp. Circuits and Syst. (MWSCAS), 2007, pp. 674-677.
[42] S. Kamath and J. Lindh. (Apr. 2012). Measuring Bluetooth® lower energy power consumption. Texas Instruments, Appl. Note AN092. [Online]. Available: www.ti.com/lit/an/swra347a/swra347a.pdf
[43] H. Kim, S. Kim, C.-K. Kwon, Y.-J. Min, C. Kim, and S.-W. Kim, “An energy-efficient fast maximum power point tracking circuit in an 800-μW photovoltaic energy harvester,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2927-2935, June 2013.
[44] A. A. Abdelmoaty and A. Fayed, “A single-step, single-inductor energy-harvesting-based power supply platform with a regulated battery charger for mobile applications,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), 2015, pp. 666-669.
[45] J.-M. Liu, P.-Y. Wang, and T.-H. Kuo, “A current-mode DC-DC buck converter with efficiency-optimized frequency control and reconfigurable compensation,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 869-880, Feb. 2012.
[46] X. Zhou, T. G. Wang, and F. C. Lee, “Optimizing design for low voltage DC–DC converters,” in Proc. IEEE Appl. Power Electron. Conf., 1997, pp. 612–616.
[47] W. Fu, S. T. Tan, and A. Fayed, “Switching and conduction loss analysis of buck converters operating in DCM-only scenarios,” in IEEE Int. Symp. Circuits and Syst. (ISCAS), 2013, pp. 921-924.
[48] A. Shrivastava, N. E. Roberts, O. U. Khan, D. D. Wentzloff, and B. H. Calhoun, “A 10 mV-input boost converter with inductor peak current control and zero detection for thermoelectric and solar energy harvesting with 220 mV cold-start and -14.5 dBm, 915 MHz RF kick-start,” IEEE J. Solid-State Circuits, vol. 50, no. 8, pp. 1820-1832, Aug. 2015.
[49] Texas Instruments, “2.4-GHz Bluetooth™ low energy and Proprietary System-on-Chip,” CC2541 datasheet, June. 2013.
[50] Texas Instruments, “CC2650 SimpleLink™ Multistandard Wireless MCU,” LTC3106 datasheet, July 2016.
[51] T. C. Carusone, D. Johns, and K. Martin, Analog Integrated Circuit Design, 2nd ed. Wiley, 2012
[52] Y. H. Wang, Y. W. Huang, P. C. Huang, H. J. Chen, and T. H. Kuo, “A Single-Inductor Dual-Path Three-Switch Converter with Energy-Recycling Technique for Light Energy Harvesting,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2716-2728, Nov. 2016.