| 研究生: |
余坤鴻 Yu, Kun-Hong |
|---|---|
| 論文名稱: |
高效的大型相控陣列天線旁波瓣抑制設計 Efficient Sidelobe Suppression Design for Large-Scale Phased Array Antennas |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 陣列天線 、田口法 、旁波辦位準 |
| 外文關鍵詞: | Sidelobe suppression, phased array antenna, Taguchi method |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一套能有效縮短陣列天線於模擬與設計階段所需時間之設計方法。該方法整合陣列天線理論與田口法(Taguchi Method)所具備之參數最佳化特性,藉此快速推導出各天線單元所需饋入之振幅與相位分配,進而達成對陣列天線旁波瓣位準(Sidelobe Level, SLL)進行有效抑制之目的。此設計流程不僅可大幅降低以往陣列天線設計所仰賴之反覆模擬次數成結構之初期快速設計。為驗證本方法之可行性與實用價值,本文選取兩組工作於 Ku 頻段(Ku Band)之實際設計案例進行模擬與分析。第一個例子採用結構簡單且廣泛應用於無線通訊系統之微帶貼片天線(Patch Antenna)作為單元天線,透過本論文所提出之設計流程進行參數優化後,成功實現將旁波瓣抑制到約20 dB以上 ,顯示其於標準結構下之應用能力。第二個例子則採用具有多層堆疊結構且搭配傳輸線饋入方式之天線設計,進一步探討多層結構與饋入方式對於旁波瓣抑制效果之影響。實驗結果顯示,在不同物理結構與饋入方式下,本方法仍能有效預測並實現所需場型特性,最終亦成功達到將旁波瓣抑制到約20 dB以上,進一步驗證其在複雜結構中的適用性與穩定性。
This thesis proposes an efficient design methodology to shorten the simulation and optimization time in large-scale phased array antenna development. By integrating array theory with the Taguchi method’s parameter optimization mechanism, the approach enables the rapid derivation of the feeding individual feeding power level and phase angle for each antenna element to suppress sidelobe levels (SLL). The method significantly reduces design complexity while maintaining accuracy, even for structures using patch and stacked-patch antennas in Ku-band. Experimental and simulation results confirm that sidelobes can be effectively suppressed below -20 dB across various beam-steering angles.
1. N. Mukit, M. R. Islam, M. H. Habaebi, et al., "Designing Large-Scale Antenna Array Asing Sub-Array ",Bulletin of Electrical Engineering and Informatics, Vol. 8, No. 3, September 2019.
2. Z. Wu, P. Wu, W. Liu, and Z. Zhang, “Adaptive Subarray Partitioning for Large-Scale Phased Arrays Using ISODATA,” Electronics Letters, vol. 61, no. 1, Jan./Dec. 2025.
3. X. Chen, Y. Sun, F. Xu, and X. Yang, “Sub-Array Partition Method Based on Particle Swarm Optimisation for Large Aperture Phased Array Radar”, The Journal of Engineering, pp. 1–5, Jul. 2019.
4. F. Guo, Z. Liu, W. Hu, and J. Tan, "Gain Prediction and Compensation for Subarray Antenna with Assembling Rrors based on Improved XGBoost and Transfer Learning", IET Microwaves, Antennas & Propagation, Mar. 2020.
5. K. N. Mohan, D. Kannadassan, and S. R. Zinka, "Design and Implementation of Dolph Chebyshev and Zolotarev Circular Antenna Array", Indian Journal of Science and Technology, vol. 9, no. 36, Sep. 2016.
6. W. Nie, H.-Z. Wen, K.-D. Xu, Y.-Q. Luo, X.-L. Yang, and M. Zhou, "A Compact 4×4 Filtering Microstrip Patch Antenna Array with Dolph-Chebyshev Power Distribution", IEEE Antennas and Propagation Magazine, vol. 64, no. 6, pp. 102–108, Dec. 2022.
7. S. V. R. Rao, A. M. Prasad, and Ch. S. Rani, "Antenna Array Weight Synthesis for Low Side Lobe Levels Using Window Functions", International Journal of Engineering and Advanced Technology (IJEAT), vol. 9, no. 1, Oct. 2019.
8. A. Koretz and B. Rafaely, "Dolph–Chebyshev Beampattern Design for Spherical Arrays", IEEE Transactions on Signal Processing, vol. 57, no. 6,Jun. 2009.
9. A. W. Doerry, " Catalog of Window Taper Functions for Sidelobe Control ", Sandia Report SAND2017-4042, Sandia National Laboratories, Albuquerque, NM, USA, Apr. 2017.
10. N. Mukit, M. R. Islam, M. H. Habaebi, et al., "Designing Large-Scale Antenna Array Asing Sub-Array ",Bulletin of Electrical Engineering and Informatics, Vol. 8, No. 3, September 2019.
11. Z. Wu, P. Wu, W. Liu, and Z. Zhang, “Adaptive Subarray Partitioning for Large-Scale Phased Arrays Using ISODATA,” Electronics Letters, vol. 61, no. 1, Jan./Dec. 2025.
12. X. Chen, Y. Sun, F. Xu, and X. Yang, “Sub-Array Partition Method Based on Particle Swarm Optimisation for Large Aperture Phased Array Radar”, The Journal of Engineering, pp. 1–5, Jul. 2019.
13. F. Guo, Z. Liu, W. Hu, and J. Tan, "Gain Prediction and Compensation for Subarray Antenna with Assembling Rrors based on Improved XGBoost and Transfer Learning", IET Microwaves, Antennas & Propagation, Mar. 2020.
14. K. N. Mohan, D. Kannadassan, and S. R. Zinka, "Design and Implementation of Dolph Chebyshev and Zolotarev Circular Antenna Array", Indian Journal of Science and Technology, vol. 9, no. 36, Sep. 2016.
15. W. Nie, H.-Z. Wen, K.-D. Xu, Y.-Q. Luo, X.-L. Yang, and M. Zhou, "A Compact 4×4 Filtering Microstrip Patch Antenna Array with Dolph-Chebyshev Power Distribution", IEEE Antennas and Propagation Magazine, vol. 64, no. 6, pp. 102–108, Dec. 2022.
16. S. V. R. Rao, A. M. Prasad, and Ch. S. Rani, "Antenna Array Weight Synthesis for Low Side Lobe Levels Using Window Functions", International Journal of Engineering and Advanced Technology (IJEAT), vol. 9, no. 1, Oct. 2019.
17. A. Koretz and B. Rafaely, "Dolph–Chebyshev Beampattern Design for Spherical Arrays", IEEE Transactions on Signal Processing, vol. 57, no. 6,Jun. 2009.
18. A. W. Doerry, " Catalog of Window Taper Functions for Sidelobe Control ", Sandia Report SAND2017-4042, Sandia National Laboratories, Albuquerque, NM, USA, Apr. 2017.
19. Y. P. Saputra, F. Oktafani, Y. Wahyu, and A. Munir, " Side Lobe Suppression for X-Band Array Antenna Using Dolph-Chebyshev Power Distribution", in Proc. 22nd Asia-Pacific Conf. Commun. (APCC), Yogyakarta, Indonesia, Oct. 2016.
20. J. Sun, "A Novel Design of 45° Linearly Polarized Array Antenna with Taylor Distribution", Progress In Electromagnetics Research Letters, vol. 106, 2022.
21. B. Kadri, M. Boussalah, and F. T. Bendimerad, "Phase-Only Planar Antenna Array Synthesis with Fuzzy Genetic Algorithms", IJCSI Int. J. Comput. Sci. Issues, vol. 7, no. 1, Jan. 2010.