簡易檢索 / 詳目顯示

研究生: 劉韋辰
Liu, Wei-Chen
論文名稱: 電紡液柱帶電電流量測與水流電紡纖維收集研究
Measurement of jet current in electrospinning and collection of electrospun fibers via flowing-water collector
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 155
中文關鍵詞: 電紡絲同排聚丙烯電流量測水流收集裝置
外文關鍵詞: electrospinning, isotactic polypropylene, measurement of current, flowing water collector
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在電紡絲實驗下測量電流數據,透過施加高壓電以及設定流量,待溶液從針底排出成形成Taylor cone及液柱最後溶劑揮發成纖維落在收集板上後,使用電表即可測得電流數據,不同溶液電紡所得之電流對電壓關係皆不相同,本實驗將比較其差異並加以探討。

    在高溫環境下將同排聚丙烯溶解在鄰二氯苯中置備8 wt% iPP/o-DCB溶液,並在其中添加0.5 wt%的四正丁基過氯酸銨提高溶液導電度,接著同樣也在高溫環境下進行電紡絲實驗。大多數電紡絲實驗皆是以固體收集裝置來收集纖維,收集到的纖維排列緊密,並會互相沾黏成纖維膜,本研究在電紡8 wt% iPP/o-DCB溶液實驗中使用循環水流收集裝置收集iPP纖維,目的是要收集到排列鬆散的纖維。因為使用不斷循環流動的水流收集纖維,落入水面的纖維會沿著水流方向流動,因此纖維會在落下的第一時間被帶走,不會堆積在一起,實驗中也使用相機記錄並觀察纖維在水面上流動的情形,並透掃描式電子顯微鏡來分析所收集到的纖維。

    In this study, current is measured in electrospinning. By applying high voltage and setting the flow rate, the solution is ejected from the needle tip, forming Taylor cone and jet. As the solvent evaporates, fibers are deposited on the grounded collector, and the current can be measured using an ammeter. The relationship between current and voltage differs for various solutions used in electrospinning. This experiment will compare and analyze these differences.

    In the experimental, isotactic polypropylene (iPP) is dissolved in ortho-dichlorobenzene (o-DCB) to prepare an 8 wt% iPP/o-DCB solution in high temperature, with the addition of 0.5 wt% tetrabutylammonium perchlorate to increase the solution's conductivity. The electrospinning is also conducted under the high temperature conditions. In most electrospinning, fibers are collected using a solid collector, resulting in tightly packed fibers that adhere to each other to form a fiber mat. In this study, flowing water collector is used to collect iPP fibers. The goal is to collect loosely arranged fibers, because the continuously flowing water carries the fibers away immediately from water surface, preventing them accumulating. The experiment also includes recording and observing the fibers' movement on the flowing water surface using the camera, and analyzing the fibers with SEM.

    摘要 i Extended Abstract ii 誌謝 xiii 目錄 xiv 表目錄 xvi 圖目錄 xvii 符號表 xxiv 一、前言 1 二、簡介 2 2.1電紡絲介紹 2 2.2電紡絲觀察 3 2.3電紡液柱帶電電流量測 3 2.4以水流作為電紡絲纖維收集裝置 5 三、文獻回顧 5 3.1聚丙烯(polypropylene)簡介 5 3.1.1聚丙烯(polypropylene)的介紹 5 3.1.2同排聚丙烯(isotactic polypropylene, iPP)簡介 6 3.2同排聚丙烯電紡絲實驗 7 3.3電紡液柱帶電電流量測 13 3.4以水流作為電紡絲纖維收集裝置 19 四、實驗 53 4.1實驗藥品 54 4.2實驗儀器 55 4.3 分析儀器 56 4.4實驗步驟 56 4.4.1 8 wt% iPP/o-DCB溶液配置 56 4.4.2 7 wt% PVA水溶液配置 56 4.4.3 高溫電紡8 wt% iPP/o-DCB溶液絲實驗 56 4.4.4電紡液柱帶電電流量測 57 4.4.5以水流裝置收集電紡絲纖維操作 57 五、結果與討論 63 5.1電紡液柱帶電電流量測 63 5.1.1電紡7 wt% PVA水溶液並測量電流 64 5.1.2電紡9 wt% PNIPAM/PVA混摻水溶液並測量電流 66 5.1.3電紡21 wt% Nylon/FA溶液並測量電流 67 5.1.4電紡8 wt% iPP/o-DCB溶液並電流 68 5.2電紡8 wt% iPP / o-DCB溶液 - 以水流作為收集裝置 69 5.2.1電紡8 wt% iPP / o-DCB溶液 69 5.2.2以水流作為收集裝置 69 5.2.3電紡絲纖維 71 六、結論 119 七、參考文獻 120 八、附錄 124

    [1] 謝彩娟,“高溫電紡同排聚丙烯奈米纖維及其微結構鑑定.”,國立成功大學碩士論文, (2010).
    [2] S. Brűckner, S. V. Meille, V. Petraccone, B. Pirozzi, “Polymorphism in Isotactic Polypropylene ”, Progress in Polymer Science 16, 361-404 (1991).
    [3] B. Lotz, J. C. Wittmann, A. Lovinger, “Structure and Morphology of Poly(propylenes): a Molecular Analysis.”, Polymer 37, 4979-4992 (1996).
    [4] Labour, L. Ferry, C. Gauthier, P. Hajji, G. Vigier, “- and - Crystalline Forms of Isotactic Polypropylene Investigated by Nanoindentation.”, Journal of Applied Polymer Sciencep 74, 195-200 (1999).
    [5] A. T. Joones, J. M. Aizlewood, D. R. Beckett, “Crystalline Forms of Isotactic Polypropylene.”, Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 75, 134-158 (1964).
    [6] F. J. Padden. JR, H. D. Keith, “Spherulitic Crystallization in Polypropylene.”, Journal of Applied Physics 30, 1479-1484 (1959).
    [7] V. Desreux, “L’extraction Fractionee Systematique des Polymeres.”, Recueil des Travaux Chimiques des Pays‐Bas 68, 789-806 (1949).
    [8] L. Larrondo, R. St. John Manley, “Electrostatic Fiber Spinning from Polymer Melts. I. Experimental Observations on Fiber Formation and Properties.”, Journal of Polymer Science: Polymer Physics Edition 19, 909-920 (1981).
    [9] J. Lyons, C. Li, F. Ko, “Melt-electrospinning Part I : Processing Parameters and Geometric Properties.”, Polymer 45, 7597–7603 (2004).
    [10] Y. Kadomae, Y. Maruyama, M Sugimoto, T Taniguchi, K. Koymam, “ Relation between Tacticity and Fiber Diameter in Melt-Electrospinning of Polypropylene.”, Fibers and Polymers 10, 275-279 (2009).
    [11] S. N. Malakhov, S. I. Belousov, A. S. Orekhov, S. N. Chvalun, “Eectrospinning of Nonwoven Fabrics From Polypropylene Melt with additions of Stearates of Divalent Metals.”, Fibre Chemistry 50, 27-32 (2018).
    [12] L. Cao, D. f. Su, Z. Q. Su, X. N. Chen, “Morphology, Crystallization Behavior and Tensile Properties of β-nucleated Isotactic Polypropylene Fibrous Membranes prepared by Melt Electrospinning.”, Chinese Journal of Polymer Science 32, 1167-1175 (2014).
    [13] C. Wang, T. C. Hsieh, Y. W. Cheng, “Solution-Electrospun Isotactic Polypropylene Fibers : Processing and Microstructure Development during Stepwise Annealing.”, Macromolecules 43, 9022-9029 (2010).
    [14] S. Liu, Y. Liang, Y. Quan, K. Dai, G. Zheng, C. Liu, J. Chen C. Shen, “Electrospun Isotactic Polypropylene Fibers : Self-Similar Morphology and Microstructure”, Polymer 84, 3117-3123 (2013).
    [15] D. Cho, H. Zhou, Y. Cho, D. Audus, Y. L. Joo, “Structural Properties and Superhydrophobicity of Electrospun Polypropylene Fibers From Solution and Melt.”, Polymer 51, 6005-6012 (2010)..
    [16] X. Y. Ye, F. W. Lin, X. J. Huang, H. Q. Liang, Z. K. Xu, “Polymer Fibers with Hierarchically Porous Structure: Combination of High Temperature Electrospinning and Thermally Induced Phase Separation.”, RSC advances 3, 13851-13858 (2013).
    [17] S. A. Theron, E. Zussman, A. L. Yarin, “ Experimental Investigation of the Governing Parameters in the Electrospinning of Polymer Solution “, Polymer 45, 2017-2030 (2004).
    [18] P. K. Bhattacharjee, T. M. Schneider, M. P. Brenner, G. H. McKinley, G. C. Rutledge, “ On the Measured Current in Electrospinning “, Journal of Applied Physics 107, 044306 (2010).
    [19] M. M. Munir, A. B. Suryamas, F. Iskandar, K. Okuyama, “ Scaling law on particle-to-fiber formation during electrospinning “, Polymer 50, 4935-4943 (2009).
    [20] A. M. Gañan-Calvo, A. Barrero, “A Global Model for the Electrospraying of Liquids in Steady Cone-jet Mode.”, Journal of Aerosol Science 27, 179-180 (1996).
    [21] J. H. He, Y. Q. Wan, J. Y. Yu, “Scaling Law in Electrospinning: Relationship between Electric Current and Solution Flow Rate.”, Polymer 46, 2799-2801 (2005).
    [22] J. H. He, Y. Q. Wan, “Allometric Scaling for Voltage and Current in Electrospinning.”, Polymer 45, 6731-6734 (2004).
    [23] M. M. Demir, I. Yilgor, E. Yilgor, B. Erman, “ Electrospinning of Polyurethane Fibers”, Polymer 43, 3303-3309 (2002).
    [24] D. Fallahi, M. Rafizadeh, N. Mohammadi, B. Vahidi, “Effect of Applied Voltage on Jet Electric Current and Flow Rate in Electrospinning of Polyacrylonitrile Solutions”, Polymer Int 57, 1363-1368 (2008).
    [25] J. Fernandez, D. L. Mora, I. G. Loscertales, “ The Current Emitted by Highly Conducting Taylor cones”, J. Fluid Mech 260, 155-184 (1994).
    [26] Y. Q. Wan, J. H. He, J. Y. Yu, “Experimental Cerification of Scaling Law between Current and Applied Voltage in Electrospinning.”, Iranian Polymer Journal 15, 265-268 (2009).
    [27] S. Li, B. K. Lee, “Hydrodynamic and Electrical Interactions in Electrospinning of Polymer Fibers over a Liquid Collector”, Journal of Applied Polymer Science 138, 51271 (2021).
    [28] S. Li, B. K. Lee, “ Electrospinning of Circumferentially Aligned Polymer Nanofibers Floating on Rotating Water Collector”, Journal of Applied Polymer Science 137, 48759 (2019).
    [29] S. M. Park, S. Eom, W. Kim, D. S. Kim, “ Role of Grounded Liquid Collectors in Precise Patterning of Electrospun Nanofiber Mats”, Langmuir 34, 284-290 (2018).
    [30] Y. Yokoyama, S. Hattori, C. Yoshikawa, Y. Yasuda, H. Koyama, T. Takato, H. Kobayashi, “Novel Wet Electrospinning System for Fabrication of Spongiform Nanofiber 3-dimensional Fabric.”, Materials letters 63, 754-756 (2009).
    [31] Long. T, T. Yan, J. Li, Z. Pan, "Nanofiber Filaments Fabricated by a Liquid-Bath Electrospinning Method.", Novel Aspects of Nanofibers IntechOpen 2, 160 (2018).
    [32] J. Li, L. Tian, N. Pan, Z. Pan, “Mechanical and Electrical Properties of the PA6/SWNTs Nanofiber Yarn by Electrospinning.” Polymer Engineering & Science 54, 1618-1624 (2014).
    [33] E. Smit, U. Bűttner, R. D. Sanderson. "Continuous yarns from electrospun fibers.", Polymer 46, 2419-2423 (2005).
    [34] S. Koombhongse, W. Liu, D. H. Reneker, “Flat Polymer Ribbons and other Sharps by Electrospinning.” Journal of Polymer Science Part B 21, 441-448 (2001).
    [35] 林勝然,”使用循環流水裝置收集電紡絲同排聚丙烯纖維及其自增強複合材料之性質鑑定.”,國立成功大學碩士論文, (2023).

    無法下載圖示 校內:2029-08-22公開
    校外:2029-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE