簡易檢索 / 詳目顯示

研究生: 柯一鼎
Ko, I-Ting
論文名稱: 具同步開關之平均電流模式升-降壓型直流-直流轉換器
Synchronous-Switch Average-Current-Mode Buck-Boost DC-DC Converter
指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 83
中文關鍵詞: 平均電流模式升降壓直流-直流轉換器
外文關鍵詞: average-current-mode, buck-boost, DC-DC converter
相關次數: 點閱:111下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於科技的蓬勃發展,使得可攜式電子產品日益繁多。而可攜式電子產品幾乎皆使用鋰電池來作為電力來源。因電池電壓會隨使用時間而逐漸下降,為了供給後級電路一穩定電壓,故一個具有體積小且高效率特性之直流-直流電能轉換器是非常需要的。但一般的直流-直流電能轉換器 (ex: Buck、Boost)皆無法完整利用鋰電池的完整輸出電壓範圍(2.7V~4.2V)。本研究針對此情況採用一平均電流模式控制非反向之升-降壓型直流-直流交換式電壓轉換器。此種架構可以涵蓋鋰電池的輸出電壓範圍,並維持高效率且提供輸出穩定電壓(3.3V)。
    此晶片所使用製程係使用台灣積體電路公司所提供之0.35μm 2P4M 5V混合訊號製程,面積為2.14×1.92mm2。本轉換器於輸入電壓範圍2.5 V ~ 5 V之間,可以提供50mA~400 mA 的負載電流。

    Recently, the portable devices have become more and more popular, and almost all the power supply of the portable devices are using Li-ion battery, but the voltage of battery will decrease with time. To supply a constant voltage, a small-size and high-efficiency dc-dc converter is needed. Basic switching regulators (e.g., buck, boost) are not capable of using the entire Li-ion battery output voltage (2.7-4.2V) range effectively. In this work, an average-current-mode non-inverting buck-boost dc-dc converter is introduced, which can use the full-range output voltage of Li-ion battery.
    The die area of this chip is 2.14x1.92 , which was fabricated by using Taiwan Semiconductor Manufacturing Company (TSMC) 0.35μm 2P4M 5V mixed-signal polycide process. The input range is between 2.5V~5V, and it is capable to supply 50mA~400 mA load current.

    第一章 簡介 1 1.1 研究動機與發展現況 1 1.2 論文架構 2 第二章 背景資料 3 2.1 切換式穩壓器相關規格名詞解釋 3 2.1.1 穩壓特性 3 2.1.2 輸出電壓漣波 (Output Voltage Ripple) 4 2.1.3 轉換效率 (Conversion Efficiency) 4 2.1.4 暫態響應 (Transient Response) 5 2.1.5 電磁干擾 (Electromagnetic Interference) 6 2.2 切換式穩壓器基本原理 7 2.2.1 伏秒平衡定理 (Voltage-Second Balance Principle) 7 2.2.2 安秒平衡定理 (Ampere-Second Balance Principle) 8 2.2.3 連續與不連續導通模式 ( CCM & DCM ) 9 2.3 切換式穩壓器介紹 10 2.3.1 降壓轉換器 (Buck Converter) 10 2.3.2 升壓轉換器 (Boost Converter) 11 2.3.3 反向升-降壓轉換器 (Inverting Buck-Boost Converter) 12 2.3.4 SEPIC轉換器 (Single Ended Primary Inductor Converter) 13 2.3.5正向升-降壓轉換器 (Non-Inverting Buck-Boost Converter) 13 2.4 切換式穩壓器控制模式 14 2.4.1 脈波頻率調變 (Pulse Frequency Modulation, PFM ) 14 2.4.2 脈波寬度調變 (Pulse Width Modulation, PWM) 15 2.5 同步整流技術 19 第三章 系統介紹與電路設計 21 3.1 整體系統與控制迴路介紹 21 3.2 模態選擇 22 3.3 整體系統架構介紹 23 3.4 系統功率電晶體 (Power Stage) 25 3.5 帶差參考電壓電路 (Bandgap Reference Voltage Circuit) 26 3.6 2.1V定電壓產生器 (2.1V Generator) 29 3.7 同步鋸齒波及時脈產生器 (Ramp & Clock Generator) 30 3.8 模態選擇及脈衝寬度調變電路 (Mode-Select & PWM Circuit ) 33 3.9 停滯時間電路 (Dead-Time Circuit) 34 3.10 零電流偵測及反振盪電路 (Zero-Current Detector) 36 3.11 完整電感電流感測電路 (Current Sensing Circuit) 38 3.12 緩啟動電路 (Soft-Start Circuit) 40 第四章 模擬與佈局 42 4.1 全系統電路模擬結果 42 4.2 電路佈局 48 第五章 測試結果 50 5.1 量測儀器 50 5.2 量測結果 51 5.2.1降壓模態功能測試 52 5.2.2 升-降壓模態功能測試 57 5.2.3 升壓模態功能測試 59 5.2.4 電流感測電路測試 64 5.2.5 輸出電壓漣波量測 67 5.2.6 負載切換量測 71 5.2.7 電源調節率 75 5.2.8 負載調節率 76 5.2.9 效率 77 5.2.10 模擬與量測結果比較 78 5.2.11 參考論文比較表 79 第六章 結論與未來方向 80 參考文獻 81

    [1] C. H. Chen, “Average-Current-Code Non-inverting Buck-Boost DC-DC Converter,” M.S. thesis, Dept. Electronic Engineering., National Cheng Kung Univ., Tanan, Taiwan, R.O.C, July 2010
    [2] 梁適安, 交換式電源供給器之理論與實務設計, 全華圖書股份有限公司, 2008
    [3] B. Sahu and G. A. Rincón-Mora, “A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable applications,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 443-452, Mar. 2004.
    [4] P. Midya, K. Haddad, and M. Miller, “Buck or boost tracking power converter,” IEEE Power Electronics Letters, vol. 2, no. 4, Dec. 2004.
    [5] L. H. Dixon, “Average current-mode control of switching power supplies,” Unitrode Power Supply Design Seminar Manual, 1990.
    [6] J. Sun and R. M. Bass. “Modeling and practical design issues for average current control,” HApplied Power Electronics Conference and ExpositionH, vol. 2, pp. 980-986, Mar. 1999.
    [7] W. Tang, F. C. Lee, and R. B. Ridley, “Small-signal modeling of average current-mode control,” IEEE Transactions on Power Electronics, vol. 8, no. 2, pp. 112-119, Apr. 1993.
    [8] J. A. Morales-Saldana, J. Leyva-Ramos, E. E. Carbajal-Gutierrez, and M. G. Ortiz-Lopez, “Average current-mode control scheme for a quadratic buck converter with a single switch,” IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 485-490, Jan. 2008.
    [9] P. C. Huang, W. Q. Wu, H. H. Ho, K. H. Chen, and G. K. Ma, “High efficiency buck-boost converter with reduced average inductor current (RAIC) technique,” IEEE Conferences Proceedings of ESSCIRC’09, pp. 456-459, Sep. 2009.
    [10] Y. J. Lee, A. Khaligh, and A. Emadi, “A compensation technique for smooth transitions in a noninverting buck–boost converter,” IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 1002-1116, Apr. 2009.
    [11] L. S. Kim and R. W. Dutton, “Metastability of CMOS latch/flip-flop,” IEEE Journal of Solid-State Circuit, vol. 5, no. 4, pp. 942-951, Aug. 1990.
    [12] W. A. M. Van Noije, W. T. Liu, and J. Navarro, “Metastability behavior of mismatched CMOS flip-flops using state diagram analysis,” IEEE Custom Integrated Circuits Conference, pp. 27.7.1-27.7.4, May 1993.
    [13] R. J. Baker, CMOS circuit design, layout, and simulation, 2nd ed, A John Wiley & Sons, Inc., 2005.
    [14] C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS dc–dc converter with on-chip current-sensing technique,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
    [15] H. Y. H. Lam, W.H. Ki, and D. Ma, “Loop gain analysis and development of high–speed high–accuracy current sensors for switching converters,” IEEE International Symposium on Circuits and Systems (ISCAS’04), vol. 5, pp. 828-831, 2004.
    [16] B. Sahu, “Integrated, dynamically adaptive supplies for linear RF power amplifiers in portable applications,” Ph.D. dissertation, Georgia Institute of Technology, 2004.
    [17] B. Sahu and G. A. Rincon-Mora “A high-efficiency, dual-mode, dynamic, buck-boost power supply IC for portable applications,” 2005 18th International Conference on VLSI Design, pp. 858-861, 2005.
    [18] R. W. Erickson and D. Maksimovic’, Fundamentals of power electronics, 2nd ed, Kluwer Academic Publishers, 2001
    [19] X. Ren, Z. Tang, X. Ruan, J. Wei, and G. Hua, “Four switch buck-boost converter for telecom dc-dc power supply application,” IEEE Applied Power Electronics Conference and Exposition (APEC’08), pp. 1527-1530, 2008.
    [20] C. Zheng and D. Ma, “A 10MHz 92.1%-efficiency green-mode automatic reconfigurable switching converter with adaptively compensated single-bound hysteresis control,” IEEE International Solid-State Circuits Conference, pp. 204-205, Feb. 2010.
    [21] Y. H. Lee, S. C. Huang, S. W. Wang, W. C. Wu, P. C. Hung, H. H. Ho, Y. T. Lai, and K. H. Chen, “Power-Tracking Embedded Buck-Boost Converter with Fast Dynamic Voltage Scaling for SoC System,” IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 1002-1116, Dec. 2010.
    [22] M. H. Huang and K. H. Chen, “Single-Inductor Multi-Output (SIMO) DC-DC Converters with High Light-Load Efficiency and Minimized Cross-Regulation for Portable Device,” IEEE Journal of Solid-Sate Circuits, vol. 44, no. 4, pp.1099-1111, Apr. 2009.
    [23] M. H. Huang and K. H. Chen, “Single-Inductor Dual Buck-Boost Output (SIDBBO) Converters with Adaptive Current Control Mode (ACCM) and Adaptive Body Switch (ABS) for Compact Size and Long Battery Life in Portable Device,” IEEE Technical Papers of Symposium on VLSI Circuits, pp.164-165, 2009.

    下載圖示 校內:2016-08-22公開
    校外:2016-08-22公開
    QR CODE