| 研究生: |
陳冠智 Chen, Kuan-Zhi |
|---|---|
| 論文名稱: |
具柔性切換操作之高頻VIENNA
功率因數修正轉換器 High-Frequency VIENNA Power Factor Correction Converter with Soft-Switching Operation |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | VIENNA功率因數修正轉換器 、柔性切換 、零電壓導通 、平均電流控制 |
| 外文關鍵詞: | VIENNA PFC, soft-switching, zero voltage switching, average current control |
| 相關次數: | 點閱:140 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對高頻化三相系統之功率修正因數轉換器,研究三相四線高頻VIENNA功率因數修正轉換器,其利用寬能隙半導體元件減少高頻切換損失,並採用輔助電路應用於VIENNA功率因數修正轉換器,使主開關達到柔性切換,提升整體系統效率。其分別針對原VIENNA功率因數修正轉換器與具緩振柔性切換VIENNA功率因數修正轉換器架構進行模式分析,設計其硬體電路及輔助電路,且基於平均電流控制模式下,設計其主開關與輔助開關控制。透過模擬軟體與硬體電路實現三相四線高頻VIENNA功率因數修正轉換器與單相高頻具緩振電路柔性切換VIENNA功率因數修正轉換器。經由實驗,整體電路系統可達三相10 kW輸出功率,於500 kHz硬切換下,系統效率峰值可達96.3 %,並於單相3.3 kW額定輸出功率,500 kHz柔性切換下,實驗結果驗證具緩振柔性切換架構於各輸入電壓之零電壓導通實驗下,效率最高改善2.73 %。
This thesis focuses on the power factor correction (PFC) converter for high-frequency three-phase systems and develops a three-phase four-wire high-frequency VIENNA PFC converter. The converter utilizes wide bandgap semiconductor devices to minimize high-frequency switching losses and incorporates an auxiliary circuit to achieve soft-switching of the main switches, thereby improving the overall system efficiency. The analysis includes the evaluation of the operation mode of both the original VIENNA PFC converter and the VIENNA PFC converter with a snubber soft-switching structure. Hardware and auxiliary circuits are designed for these converter architectures, and control of the main and auxiliary switches is based on the average current control mode. The designed converters are implemented using simulation software and hardware circuits. Experimental results demonstrate that the overall system can achieve an output power of 10 kW for three-phase operation at a hard-switching frequency of 500 kHz, with a peak system efficiency of 96.3%. Additionally, experiments validate that the soft-switching and snubber structure, in zero-voltage turn-on experiments for various input voltages, results in a maximum efficiency improvement of 2.73% for a single-phase 3.3 kW rated output power at a soft-switching frequency of 500 kHz.
[1] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, “A survey of wide bandgap power semiconductor devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155-2163, May 2014.
[2] R. Singh, D. C. Capell, A. R. Hefner, J. Lai and J. W. Palmour, "High-power 4H-SiC JBS rectifiers," IEEE Trans. Electron Devices, vol. 49, no. 11, pp. 2054-2063, Nov. 2002.
[3] T. Funaki, et al., "Power conversion with SiC devices at extremely high ambient temperatures," IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1321-1329, Jul. 2007.
[4] E. A. Jones, F. F. Wang, and D. Costinett, “Review of commercial GaN power devices and GaN-based converter design challenges,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 707-719, Sep. 2016.
[5] A. P. Zhang, G. T. Dang, F. Ren, H. Cho, K.-P. Lee, S. J. Pearton, et al., "Comparison of GaN P-I-N and Schottky rectifier performance," IEEE Trans. Electron. Devices, vol. 48, no. 3, pp. 407-411, Mar. 2001.
[6] Y. Kim, J. Kim, K. Choi, B. Suh, and R. Kim, “A novel soft-switched auxiliary resonant circuit of a PFC ZVT-PWM boost converter for an integrated multichip power module fabrication,” IEEE Trans. Ind. Appl., vol. 49, no.6, pp. 2802-2809, Nov. 2013.
[7] N. Korada, and R. Ayyanar, “A 3kW, 500 kHz E-mode GaN HEMT based soft-switching totem-pole PFC,” IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), pp. 237-244, 2019.
[8] F. L. Tofoli, E. A. A. Coelho, L. C. de Freitas, V. J. Farias, and J. B. Vieira, “Proposal of a soft-switching single-phase three-level rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 107-113, Jan. 2008.
[9] A. Ali, M. M. Khan, J. Yuning, Y. Ali, M. T. Faiz, and J. Chuanwen, “ZVS/ZCS Vienna rectifier topology for high power applications,” IET Power Electron., vol. 12, no. 5, pp. 1285-1294, Jan. 2019.
[10] M. Pahlevani and P. Jain, "A fast DC-bus voltage controller for bidirectional single-phase AC/DC converters," IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4536-4547, Aug. 2015.
[11] H. S. Kim, J. W. Baek, M. H. Ryu, J. H. Kim and J. H. Jung, "The high-efficiency isolated ac--dc converter using the three-phase interleaved LLC converter employing the Y-connected rectifier," IEEE Trans. Power Electron, vol. 29, no. 8, pp. 4017-4028, Aug. 2014.
[12] D. Chapman, D. James, and C. J. Tuck, “A high density 48V 200A rectifier with power factor correction - an engineering overview, ” in Proc. IEEE Int. Telecommun. Energy Conf., 1993, pp. 118-125.
[13] R. Greul, S. D. Round, and J. W. Kolar, “The delta-rectifier : analysis, control and operation,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1637-1648, Nov. 2006.
[14] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems–part II,” IEEE Trans. Power Electron., vol.29, no.2, pp.543-560, Feb. 2014.
[15] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[16] S. D. Round, P. Karutz, M. L. Heldwein, and J. W. Kolar, “Towards a 30 kW/liter, three-phase unity power factor rectifier,” in Proc. Power Convers. Conf., vol. 2, 2007, pp. 1251-1259.
[17] B. Liu, R. Ren, E. A. Jones, F. Wang, D. Costinett, and Z. Zhang, “A modulation compensation scheme to reduce input current distortion in GaN-based high switching frequency three-phase three-level Vienna-type rectifiers,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 283-298, Jan. 2018.
[18] G. Aiello, M. Cacciato, G. Scarcella, G. Scelba, F. Gennaro and N. Aiello, "Mixed signals based control of a SiC Vienna rectifier for on-board battery chargers," in Proc. 21st Eur. Conf. Power Electron. Appl. (EPE ECCE Eur.), Sep. 2019, pp. 1-9.
[19] Q. Wang, X. Zhang, R. Burgos, D. Boroyevich, A. White and M. Kheraluwala, "Design and implementation of a two-channel interleaved Vienna-type rectifier with >99% efficiency," IEEE Trans. Power Electron., vol. 33, no. 1, pp. 226-239, Jan. 2018.
[20] S. Chen, W. Yu, and D. Meyer, “Design and implementation of forced air-cooled 140kHz 20kW SiC MOSFET based Vienna PFC,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2019, pp. 1196-1203.
[21] Z. Liu, F. C. Lee, Q. Li and Y. Yang, "Design of GaN-based MHz totem-pole PFC rectifier," IEEE Trans. Power Electron., vol. 4, no. 3, pp. 799-807, Sept. 2016.
[22] T. Sadilek, L. Huber, Y. Jang, P. Barbosa and I. Husain, "Analysis, design, and performance evaluation of SiC active soft-switching cell for 1-ph/3-ph universal voltage input PFC for on-board charger applications," IEEE Trans. Power Electron., vol. 38, no. 1, pp. 1204-1217, Jan. 2023.
[23] S. D. Round, P. Karutz, M. L. Heldwein, and J. W. Kolar, “The auxiliary resonant commutated pole converter,” in Proc. Power Convers. Conf., vol. 2, 2007, pp. 1251-1259.
[24] W. Dong, J. Y. Choi, F. C. Lee, D. Boroyevich, and J. Lai, "Comprehensive evaluation of auxiliary resonant commutated pole inverter for electric vehicle applications," in Proc. IEEE PESC, 2001, pp. 625-630.
[25] R. W. De Donker and J. P. Lyons, “The auxiliary resonant commutated pole inverter,” in Proc. IEEE-IAS Annu. Meeting, 1990, pp. 1228-1235.
[26] D. Ma, P. Wang, R. Wang, S. Li and Q. Sun, "Hybrid SVPWM modulation strategy for auxiliary resonant commutated pole inverter," IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 4, pp. 4750-4761, Aug. 2021.
[27] J.-Y. Choi, D. Boroyevich, J. Francis, and F.C. Lee, "A novel ZVT inverter with simplified auxiliary circuit," in Proc. IEEE APEC, 2001, pp. 1151-1157.
[28] J. Lai, R. W. Young, G. W. Ott, J. W. McKeever, and F. Z. Peng, “A delta-configured auxiliary resonant snubber inverter,” IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 518-525, May/Jun. 1996.
[29] C. DiMarino, Z. Chen, M. Danilovic, D. Boroyevich, R. Burgos and P. Mattavelli, "High-temperature characterization and comparison of 1.2 kV SiC power MOSFETs," in Proc. IEEE Energy Convers. Congr. Expo., 2013, pp. 3235-3242.
[30] C. DiMarino, Z. Chen, D. Boroyevich, R. Burgos and P. Mattavelli, "Characterization and comparison of 1.2 kV SiC power semiconductor devices," in Proc. 15th Eur. Conf. Power Electron. Appl., 2013, pp. 1-10.
[31] Z. Liu, B. Li, F. C. Lee and Q. Li, "High-efficiency high-density critical mode rectifier/inverter for WBG-device-based on-board charger," IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9114-9123, Nov. 2017.
[32] Y. Yang, Z. Liu, F. C. Lee and Q. Li, "Multi-phase coupled and integrated inductors for critical conduction mode totem-pole PFC converter," in Proc. IEEE Appl. Power Electron. Conf. Expo., 2017, pp. 1804-1809.
[33] B. Li, F. C. Lee, Q. Li and Z. Liu, "Bi-directional on-board charger architecture and control for achieving ultra-high efficiency with wide battery voltage range," in Proc. IEEE Appl. Power Electron. Conf. Expo., 2017, pp. 3688-3694.
[34] S. Kulasekaran and R. Ayyanar, “A 500-kHz, 3.3-kW power factor correction circuit with low-loss auxiliary ZVT circuit,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4783-4795, June. 2018.
[35] Z. Yu, Y. Xia, and R. Ayyanar, “A simple ZVT auxiliary circuit for totem-pole bridgeless PFC rectifier,” IEEE Trans. Ind. Appl., vol.55, no. 3, pp. 2868-2878, May 2019.
[36] 陳立哲,應用於高頻VIENNA功因修正轉換器之柔性切換電路,國立成功大學電機工程學系碩士論文,2021年。
[37] 趙育鋮,應用於不斷電系統之三相四線制整流器研製,國立成功大學電機工程學系碩士論文,2021年。
[38] 溫祺瑞,數位控制應用於不斷電系統之SiC功率因數修正轉換器,國立成功大學電機工程學系碩士論文,2022年。
[39] Y. Suzuki, T. Teshima, I. Sugawara, and A. Takeuchi, “Experimental studies on active and passive PFC circuits,” in Proc. IEEE Int. Telecommun. Energy Conf., 1997, pp. 571-578.
[40] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems–part I,” IEEE Trans. Power Electron., vol.28, no.1, pp.176-198, Jan. 2013.
[41] T. Soeiro, T. Friedli, M. Hartmann, and J. W. Kolar, “New unidirectional hybrid delta-switch rectifier,” in Proc. Int. Power Electron. Conf., 2011, pp. 1474-1479.
[42] Thiago B. Soeiro, Johann W. Kolar, “Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3589-3601, Sep. 2013.
[43] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics, John Wiley & Sons Ins., 2003.
[44] L. Balogh, “Fundamentals of MOSFET and IGBT gate driver circuits,” Texas Instruments Application Report, SLUA618, 2018.
[45] Texas Instruments, “Vienna rectifier-based, three-phase power factor correction (PFC) reference design using C2000™ MCU” TIDUCJ0B, Apr. 2020. [Online]. Available: https://www.ti.com/tool/TIDM-1000
[46] F. Jin, A. Nabih, C. Chen, X. Chen, Q. Li and F. C. Lee, "A high efficiency high density DC/DC converter for battery charger applications," in Proc. IEEE Appl. Power Electron. Conf. Expo., 2021, pp. 1767-1774.
[47] 3F36 Datasheet, Ferroxcube, 2013.
[48] PQ35/35 Datasheet, TDK Electronics, 2022.
[49] G3R30MT12K Datasheet, GeneSiC Semiconductor, 2021
[50] GD50MPS12H Datasheet, GeneSiC Semiconductor, 2021
[51] SI8271IB Datasheet, Skyworks, 2022
[52] ACS733 Datasheet, ALLEGRO, 2019
[53] AMC1301 Datasheet, TEXAS INSTRUMENTS, 2020
[54] TMS320F28379D Datasheet, TEXAS INSTRUMENTS, 2013
[55] F. A. Huliehel, F. C. Lee and B. H. Cho, "Small-signal modeling of the single-phase boost high power factor converter with constant frequency control," in Proc. IEEE Power Electron. Spec. Conf., 1992, pp. 475-482.
[56] OPA320 Datasheet, TEXAS INSTRUMENTS, 2011
[57] Colonel William T. McLyman, Transformer and Inductor Design Handbook Third Edition, Revised and Expanded, 2004
[58] L. Hang, M. Zhang, L. M. Tolbert and Z. Lu, "Digitized feedforward compensation method for high-power-density three-phase Vienna PFC converter," IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1512-1519, Apr. 2013.
校內:2028-07-19公開