| 研究生: |
潘柏辰 Pan, Po-Cheng |
|---|---|
| 論文名稱: |
以三閘極氮化鋁鎵/氮化鎵高電子遷移率電晶體研製氫氣感測器 Hydrogen Sensor Based on Tri-Gate AlGaN/GaN High Electron Mobility Transistor |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 氫氣感測器 、三閘極 、氮化鎵 、高電子遷移率電晶體 |
| 外文關鍵詞: | Hydrogen sensor, Tri-gate, GaN, HEMT |
| 相關次數: | 點閱:142 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為三閘極氮化鎵高電子遷移率電晶體應用於氫氣感測的研究。實驗方面,製備了800、400、200 nm,三種不同鰭寬的三閘極結構以及作為對照的平面型結構,並各別在電性以及氣體響應特性上分析。由於三閘極結構中的側壁空乏效應,使得閾值電壓會隨著鰭寬的縮小而有正偏移的趨勢,從平面型的-3.9 V,到三閘極結構鰭寬為800、400、200 nm的-3.2,-2.1,-0.8 V。同時影響到最大汲極電流密度的下降,從平面型的518.3 mA/mm,到鰭寬為800、400、200 nm的552.8,463.3,266.5 mA/mm。此外,三閘極結構的次臨界擺幅跟電流開關比等特性都有明顯的優化,足見三閘極結構對閘極控制力提升所帶來的影響。
氣體響應方面,選用鉑作為閘極電極,其表面可吸附氫氣分子進行催化反應,造成位能障下降使得汲極電流上升。透過監測汲極電流變化可判定氫氣的響應。而三閘極結構相比於平面型結構擁有了更多的表面積以利氫氣分子吸附。在攝氏兩百度,氫氣濃度為250 ppm的條件下,響應值從平面型的484 %,到三閘極結構鰭寬為800、400、200 nm的661、698、1079 %。對比於平面型結構,三閘極結構不論是在元件電性上或氣體響應上都有更出色的表現。
This thesis explored the performance of tri-gate GaN high electron mobility transistor in hydrogen detection through experiments. We fabricated three tri-gate devices with different fin widths and the reference planar device. The electrical and response characteristics were investigated. The threshold voltage shifted positively with the narrowing fin width owing to the effect of sidewall depletion in the tri-gate structure. The threshold voltages of the planar device and tri-gate devices with 800, 400, and 200 fin widths were − 3.9, −3.2, −2.1, and −0.8 V, respectively. The maximum drain current density decreased with the increase in threshold voltage. The maximum drain current densities of the planar device and tri-gate devices with 800, 400, and 200 nm fin widths were 518.3, 552.8, 463.3, and 266.5 mA/mm, respectively. The improvement of subthreshold swing and on-off ratio indicated that the gate controllability was well enhanced in the tri-gate devices.
With regard to the hydrogen response characteristics, we chose platinum as the gate electrode because its surface can capture the hydrogen molecules in air and then performed the catalytic reaction, leading to the increasing drain current with lowering barrier height. The hydrogen response characteristics were determined by governing the variation of the drain current. The tri-gate device had more surface area than the planar device, which was beneficial to the molecular adsorption. At 200 °C and 250 ppm, the sensitivity of the planar device was 484%, and the sensitivities of the tri-gate devices with 800, 400, and 200 nm were 661%, 698%, and 1079%, respectively. The tri-gate device had superior performance in electrical and response characteristics compared with the planar device.
[1] T. Petkov, T.N. Veziroǧlu, and J.W. Sheffield, “An outlook of hydrogen as an automotive fuel,” Int. J. Hydrogen Energy, vol. 14, no. 7, pp. 449–474, Jan. 1989.
[2] P. Agnolucci, “Economics and market prospects of portable fuel cells,” Int. J. Hydrogen Energy, vol. 32, no. 17, pp. 4319–4328, Dec. 2007.
[3] S.T. Hunga, C.J. Chang, C.H. Hsu, B.H. Chu, C.F. Lo, C.C. Hsu, S.J. Pearton, M.R. Holzworth, P.G. Whiting, N.G. Rudawski, K.S. Jones, A. Dabiran, P. Chow, and F. Ren, “SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications,” Int. J. Hydrogen Energy, vol. 37, no. 18, pp. 13783–13788, Sep. 2012.
[4] D. Das, “Advances in biohydrogen production processes: An approach towards commercialization,” Int. J. Hydrogen Energy, vol. 34, no. 17, pp. 7349–7357, Sep. 2009.
[5] G.R. Astbury and S.J. Hawksworth, “Spontaneous ignition of hydrogen leaks: A review of postulated mechanisms,” Int. J. Hydrogen Energy, vol. 32, no. 13, pp. 2178–2185, Sep. 2007.
[6] “$100 Million Green Hydrogen Fuel Cell Truck Plan For USA.” https://cleantechnica.com/2020/10/11/usas-100-million-green-hydrogen-fuel-cell-plan/
[7] “Catalytic combustion sensors | GASTEC CORPORATION.” https://www.gastec.co.jp/en/product/detail/id=2205
[8] T.V. Dinh, I.Y. Choi, Y.S. Son, and J.C. Kim, “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction,” Sensors Actuators B Chem., vol. 231, pp. 529–538, Aug. 2016.
[9] “Electrochemical vs . Semiconductor Gas Detection – a Critical Choice” https://www.emerson.com/documents/automation/white-paper-electrochemical-vs-semiconductor-gas-detection-en-5351906.pdf
[10] H. Nazemi, A. Joseph, J. Park, and A. Emadi, “Advanced micro-and nano-gas sensor technology: A review,” Sensors (Switzerland), vol. 19, no. 6, 2019.
[11] C.D. Young, “EUV: Enabling cost efficiency, tech innovation and future industry growth Public,” ASML Present., 2019.
[12] H. Yu, M. Schaekers, E. Rosseel, J.L. Everaert, P. Eyben, T. Chiarella, C. Merckling, T.K. Agarwal, G. Pourtois, A. Hikavyy, S. Kubicek, L. Witters, A.S. Hernandez, J. Mitard, N. Waldron, S.A. Chew, S. Demuynck, N. Horiguchi, K. Barla, A.V.Y. Thean, A. Mocuta, D. Mocuta, N. Collaert, and K.D. Meyer, “Heterostructure at CMOS source/drain: Contributor or alleviator to the high access resistance problem?,” Tech. Dig. - Int. Electron Devices Meet. IEDM, pp. 25.1.1-25.1.4, Jan. 2017.
[13] IEEE IRDS, “I Nternational Roadmap for Devices and Systems TM 2021 U Pdate More Than Moore White Paper,” 2021.
[14] T.E. Zipperian and R.J. Chaffin, High temperature electronics. New York : IEEE Press, 1999.
[15] “Gallium Nitride (GaN) - STMicroelectronics.” https://www.st.com/content/st_com/en/about/innovation---technology/GaN.html.
[16] T. Hanada, Oxide and Nitride Semiconductors Processing, Properties, and Applications. 2009.
[17] S. Limpijumnong and W.R.L. Lambrecht, “Theoretical study of the relative stability of wurtzite and rocksalt phases in MgO and GaN,” Phys. Rev. B, vol. 63, no. 10, p. 104103, Feb. 2001.
[18] O. Ambacher, J. Smart, and J.R. Shealy, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, p. 3222, 1999.
[19] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 56, no. 16, pp. R10024–R10027, 1997.
[20] J. Sun, “Design, fabrication and characterizations of AlGaN/GaN heterostructure sensors,” 2020.
[21] G. Meneghesso, M. Meneghini, and E. Zanoni, Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion. Cham: Springer International Publishing, 2018.
[22] T. Higuchi, S. Nakagomi, and Y. Kokubun, “Field effect hydrogen sensor device with simple structure based on GaN,” Sensors Actuators, B Chem., vol. 140, no. 1, pp. 79–85, 2009.
[23] P. Sharma, N. Tripathi, and N. Gupta, “Nanocrystalline silicon thin film prepared by e-beam evaporation for display application,” J. Mater. Sci. Mater. Electron., vol. 28, no. 4, pp. 3891–3896, 2017.
[24] “Thin Film Multichip Packaging for High Temperature Geothermal Application” https://www.researchgate.net/publication/309398204_Kun_Fang_Dissertation-Thin_Film_Multichip_Packaging_for_High_Temperature_Geothermal_Application
[25] “The Transmission Electron Microscope | CCBER.” https://www.ccber.ucsb.edu/ucsb-natural-history-collections-botanical-plant-anatomy/transmission-electron-microscope.
[26] “Energy-Dispersive X-ray Spectroscopy (EDS) - Chemistry LibreTexts.” https://chem.libretexts.org/Courses/Franklin_and_Marshall_College/Introduction_to_Materials_Characterization__CHM_412_Collaborative_Text/Spectroscopy/Energy-Dispersive_X-ray_Spectroscopy_(EDS).
[27] S. Takeichi, Y. Ushita, R. Sugai, K. Sakai, T. Kiwa, and K. Tsukada, “Impedance Evaluation of Hydrogen Sensor Using Ultrathin Platinum Film,” Trans. Mater. Res. Soc. Japan, vol. 40, no. 1, pp. 69–72, 2015.
[28] B. Lu, E. Matioli, and T. Palacios, “Tri-gate normally-off GaN power MISFET,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 360–362, Mar. 2012.
[29] S. Liu, Y. Cai, G. Gu, J. Wang, C. Zeng, W. Shi, Z. Feng, H. Qin, Z. Cheng, K.J. Chen, and B. Zhang, “Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 354–356, Mar. 2012.
[30] A.O. Conde, F.J.G. Sánchez, J.J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, “A review of recent MOSFET threshold voltage extraction methods,” Microelectron. Reliab., vol. 42, no. 4–5, pp. 583–596, Apr. 2002.
[31] M. Azize and T. Palacios, “Top-down fabrication of AlGaN/GaN nanoribbons,” Appl. Phys. Lett., vol. 98, no. 4, p. 042103, Jan. 2011.
[32] K. Ohi, J.T. Asubar, K. Nishiguchi, and T. Hashizume, “Current stability in multi-mesa-channel algan/gan hemts,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 2997–3004, 2013.
[33] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A Survey on Gas Sensing Technology,” Sensors (Basel)., vol. 12, no. 7, p. 9635, Jul. 2012.
[34] J.H. Choi, H. Kim, H.K. Sung, and H.Y. Cha, “Investigation of Stability and Power Consumption of an AlGaN/GaN Heterostructure Hydrogen Gas Sensor Using Different Bias Conditions,” Sensors, vol. 19, no. 24, p. 5549, Dec. 2019
[35] S.W. Fan, A.K. Srivastava, and V.P. Dravid, “UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO,” Appl. Phys. Lett., vol. 95, no. 14, p. 142106, Oct. 2009.
[36] L.L. Fields, J.P. Zheng, Y. Cheng, and P. Xiong, “Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt,” Appl. Phys. Lett., vol. 88, no. 26, p. 263102, Jun. 2006.
[37] C. Xiang, Z. She, Y. Zou, J. Cheng, H. Chu, S. Qiu, H. Zhang, L. Sun, F. Xu, “A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO2 nanotubes,” Ceram. Int., vol. 40, no. 10, pp. 16343–16348, Dec. 2014.
[38] R. Sokolovskij, J. Zhang, H. Zheng, W. Li, Y. Jiang, G. Yang, H. Yu, P.M. Sarro, and G. Zhang, “The Impact of Gate Recess on the H Detection Properties of Pt-AlGaN/GaN HEMT Sensors,” IEEE Sens. J., vol. 20, no. 16, pp. 8947–8955, Aug. 2020.
校內:不公開