簡易檢索 / 詳目顯示

研究生: 張大中
Chang, Ta-Chung
論文名稱: 高靈敏度主動式開口環共振腔應用互調倍增技術
High Sensitive Active Split-Ring Resonator Sensors Using Intermodulation Multiplication Technique
指導教授: 楊慶隆
Yang, Chin-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 69
中文關鍵詞: 指尖訊號互調技術脈搏訊號主動環形開口共振腔微分器
外文關鍵詞: Fingertip signal, intermodulation, pulse signal, split ring resonator, differentiator
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出利用主動式開口環形共振腔(Active Split-Ring Resonators, Active SRR)應用於檢測人體微弱的生命訊號,包括脈搏訊號和手指指尖訊號。感測電路的部分主要分為被動共振腔(Passive Resonator Sensor)及主動回授回授網路(Active Feeddback Loop Circuit),主動電路以正回授架構整合開口環形共振腔來設計此主動式微波共振器。此架構將原始被動電路之共振腔結合主動元件來產生其振盪效果,在整體系統之前端當作感測生理訊號的裝置。在系統的設計上,可利用系統之非線性特性的互調現象來提高量測的靈敏度,並且在電路的後端加上微分器電路來使高階諧振頻率隨著進一步依其階數而再放大,來改善偶數諧振頻率,透過更高倍量的頻率偏移來使量測的生理訊號更為靈敏。
    雖然指尖訊號通常非常微弱,利用所提出的互調現象技術可將靈敏度提高1004.97%的放大倍率。利用SRR Sensor之耦合路徑來量測脈搏與指尖內的生理訊號,透過脈搏對頻率造成的偏移,高階互調頻率成分 (Intermodulation products)增強了微弱訊號源的頻率偏移量。手腕脈搏訊號量測之頻率偏移大約為3.62 MHz增加到36.38 MHz。在此實驗中可成功的量測到第20階的諧振頻率。另外,此技術量測指尖訊號與傳統的方法不同,利用微波感測的技術可透過訊號增強的效果將指尖訊號擷取出來,在頻域上與實際參考訊號相比可達到小於1.68%誤差的高精準度。

    This paper presents a novel active split ring resonator (SRR) for detecting the wrist and fingertip pulse signals. The active planar resonator functions as a sensor, as well as a positive feedback element of the oscillator. In this paper, the differentiator cleverly employed to improve the harmonics of the even order IM products and the high order frequency component is used to enhance the deviation of frequency into a time-domain waveform signal in vital sign detection. Though fingertip signal is extremely tiny in general, the proposed intermodulation multiplication technology can improve the sensitivity by 1004.97%. The frequency shift of sensing can be multiplied to highly sensitive by measuring the high level even order intermodulation (IM) components. The pulse signal can be measured from the frequency deviations of SRR by interfering the coupling path on the surface of the sensor. In this work, the highest component can be achieved to 20th IM. The frequency shift of measuring the wrist pulse signal is increased from 3.62 MHz to 36.38 MHz, approximately. Different from previous method, the fingertip signal is first measured by a microwave sensor and can achieve high accuracy of less than 1.68% error.

    目錄 IX 圖目表 XI 表目錄 XIV 第一章 緒論 1 1.1 研究方向與動機 1 1.2 微波平面共振腔基本原理與應用 2 1.3 文獻回顧 3 1.3.1 量測生理訊號的技術 3 1.4 論文架構 5 1.5 研究貢獻 7 第二章 微波平面式共振腔 8 2.1 平面式共振腔的優點 8 2.2 互補式開口環形共振腔與開口環形共振 8 2.3 RLC等效電路模型 11 2.3.1 互補式開口環形共振腔(Complementary Split Ring Resonator) 12 2.3.2 開口環形共振腔(Split Ring Resonator) 13 2.4 微波平面式共振腔研究討論 14 第三章 被動式微波共振腔量測生理訊號 15 3.1 平面式共振腔的應用 15 3.2 互補式開口環形共振環量測生理訊號 16 3.2.1 CSRR感測原理 16 3.2.2 共振腔量測與空間性質的關係 22 3.2.3 高頻與低頻量測特性探討 27 3.3 實驗量測及設置 28 第四章 主動式微波共振腔量測 34 4.1 主動電路應用 34 4.2 系統電路架構及原理 35 4.2.1 主動共振腔結構 35 4.2.2 主動電路非線性原理 42 4.3 系統電路量測生理訊號 45 4.3.1 實驗設置 45 4.3.2 量測結果 48 4.4 系統量測方法 52 4.5 系統電路簡介 52 4.5.1 生理訊號量測系統 52 4.5.2 主動平面共振腔 (Active SRR Oscillator) 54 4.5.3 混頻器與微分器應用 55 4.6 生理訊號量測 59 4.6.1 脈搏訊號量測 60 4.6.2 指尖訊號量測 62 第五章 結論與未來展望 64 5.1 結論 64 5.2 未來展望 65 第六章 參考文獻 66

    [1] Cheng-Han Hsieh, Ming-Chun Liang, Shih-Yu Chang Chien, Yuan-Sun Chu, Hsing-Chen Lin, and Shuenn-Yuh Lee, "Wearable Electrocardiogram Acquisition and Classification Systems with Different Distributive Operations," IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings,2014
    [2] B. Davarcioglu, "The dielectric properties of human body tissues at electromagnetic wave frequencies," Int. J. Sci. and Adv. Technol, vol. 1, pp. 12-19, 2011.
    [3] C.-L. Yang, T.-C. Chang, C.-M. Tsu, K.-W. Chen, "Wearable Sensors Based on a High Sensitive Complementary Split-Ring Resonator for Accurate Cardiorespiratory Sign Measurements," IEEE International Microwave Symposium(IMS-2017), Honolulu, Hawaii, USA, June 4 – 9, 2017.
    [4] Keysight Technologies, "Basics of measuring the dielectric properties of materials," Published in USA, May 16, 2014
    [5] K. Saeed, M. F. Shafique, M. B. Byrne, and I. C. Hunter, "Planar microwave sensors for complex permittivity characterization of materials and their applications," InTechOpen, Published in Dec 2012.
    [6] C.-S. Lee and C.-L. Yang, "Complementary split-ring resonators for measuring dielectric constants and loss tangents," IEEE Microw. Wireless Compon. Lett., vol. 24, no. 8, pp. 563–565, Aug. 2014.
    [7] Y. Li, N. Bowler, and D. B. Johnson, "A resonant microwave patch sensor for detection of layer thickness or permittivity variations in multilayered dielectric structures," IEEE Sensors Journal, vol. 11, pp. 5-15, 2011.
    [8] Masatoshi Sekine and Kurato Maeno, "Non-Contact Heart Rate Detection Using Periodic Variation in Doppler Frequency," IEEE Sensors Applications Symposium,2011
    [9] M. S. Boybay and O. M. Ramahi, "Non-destructive thickness measurement using quasi-static resonators," IEEE Microw. Wireless Compon. Lett., vol. 23, no. 4, pp. 217–219, Apr. 2013.
    [10] M. S. Boybay and O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Transactions on Instrumentation and Measurement, vol. 61, pp. 3039-3046, 2012.
    [11] Melvin Johnson, R. Jegan and X. Anitha Mary, "Performance Measures on Blood Pressure and Heart Rate Measurement from PPG Signal for Biomedical Applications," IEEE International Conference on Innovations, ICIEEIMT
    [12] http://urclazz.blogspot.tw/2015/09/ppg-photoplethysmography.html

    [13] Y-T.Lee, J.Lee and S.Nam, "High-Q active resonators using amplifiers and their applications to low phase noise free-running and voltage-controlled oscillators," IEEE Trans. Microwave Theory Tech., vol.52, pp.2621- 2626, Nov. 2004.
    [14] Mohammad H. Zarifi, Samira Farsinezhad, Karthik Shankar and Mojgan Daneshmand, "Liquid Sensing Using Active Feedback Assisted Planar Microwave Resonator," IEEE Microwave and Wireless Components Letters, vol. 25, no. 9, 2015
    [15] Mohammad Abdolrazzaghi, and Mojgan Daneshmand, "Compelling Im pact of Intermodulation Products of Regenerative Active Resonators on Sensitivity," IEEE International Microwave Symposium, 2017.
    [16] L. Su, J. Naqui, J. Mata-Contreras, and F. Martín, "Modeling and Applications of Metamaterial Transmission Lines Loaded With Pairs of Coupled Complementary Split-Ring Resonators (CSRRs)," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 154-157, 2016.
    [17] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications vol. 167: John Wiley & Sons, 2004.
    [18] A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors J., vol. 14, no. 5, pp. 1345–1351, May 2014.
    [19] R. Bojanic, V. Milosevic, B. Jokanovic, F. Medina-Mena, and F. Mesa, "Enhanced modelling of split-ring resonators couplings in printed circuits," IEEE Trans. Microw. Theory Tech., vol. 62, no. 8, pp. 1605– 1615, 2014.
    [20] F. Axisa et al., "Flexible Technologies and Smart Clothing for Citizen Medicine, Home Healthcare, and Disease Prevention," IEEE Trans. Inf. Biomed., vol. 9, no. 3, Sep. 2005.
    [21] Ming-Chun Liang, Cheng-Han Hsieh, Jia-Hua Hong, Shih-Yu Chang Chien and Shuenn Yuh Lee, " Live Demonstration: A Wearable Wireless ECG Acquisition and Specification System," IEEE International Symposium on Circuits and Systems (SCAS), pp.438 - 438, 2014.
    [22] M. Puentes, M. Maasch, M. Schüßler, and R. Jakoby, “Frequency Multiplexed 2-Dimensional Sensor Array Based on Split-Ring Resonators for Organic Tissue Analysis," IEEE Trans. Microw. Theory Techn., vol. 60, No. 6, pp. 1720-1727, June 2012.
    [23] Rammah Ali Alahnomi, Zahriladha Zakaria, Eliyana Ruslan, Siti Rosmaniza Ab Rashid,and Amyrul Azuan Mohd Bahar, "High-Q Sensor Based on Symmetrical Split
    Ring Resonator With Spurlines for Solids Material Detection," IEEE Sensors Journal, vol. 17, No. 9, May 1, 2017

    [24] S. G. Kim, G. H. Yun, and J. G. Yook, "Compact vital signal sensor using oscillation frequency deviation," IEEE Trans. Microw. Theory Tech., vol. 60, pp. 393–400, 2012.
    [25] C.-S. Lee, C.-Y. Wu and Y.-L. Kuo, "Wearable Bracelet Belt Resonators for Noncontact Wrist Location and Pulse Detection," IEEE Trans. Microw. Theory Tech., 2017.
    [26] C.-L. Yang, C.-S. Lee, K.-W. Chen, and K.-Z. Chen, "Noncontact measurement of Complex Permittivity and Thickness by Using Planar Resonators," IEEE Trans. Microw. Theory Techn., vol. 64, no. 1, pp. 247–257, Jan. 2016.
    [27] J. Svacina, "Dispersion characteristics of multilayered slotlines—A simple approach, "IEEE Trans. Microw. Theory Techn., vol. 47, no. 9, pp. 1826–1829, Sep. 1999.
    [28] Esna Crnojevic´-Bengin, Vasa Radonic and Branka Jokanovic, "Fractal Geometries of Complementary Split-Ring Resonators," IEEE Transactions On Microwave Theory And Techniques, Vol. 56, pp. 2312-2321, 10 October 2008
    [29] J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw Theory Techn., vol. 53, no. 4, pp.1451–1461, Apr. 2005.
    [30] L.-H. Hsieh and K. Chang, "Equivalent lumped elements G, L, C, and unloaded Q’s of closed- and open-loop ring resonators," IEEE Trans. Microwave Theory Tech., vol. 50, pp. 453–460, Feb. 2002.
    [31] C. Lee, C. Wu, Y. Kuo, "Wearable Belt Resonators Model for Wrist Detection," in the 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), Kaohsiung, Taiwan, July 26 - 29, 2016.
    [32] Y.-T. Lee, J. Lee, and S. Nam, "New planar high-Q active resonator and its application to low phase noise oscillators," IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, June 2004, pp. 2007–2010.
    [33] M. Abdolrazzaghi and M. Daneshmand, "Dual active resonator for dispersion coefficient measurement of asphaltene nano-particles," IEEE Sensors J., vol. 17, no. 22, pp. 7248–7256, Nov. 2017
    [34] M. H. Zarifi and M. Daneshmand, "Non-contact liquid sensing using high resolution microwave microstrip resonator," IEEE MTT-S Int. Microw. Symp., May 2015, pp. 1–4.
    [35] Aznar, F., M. Gil, G. Siso, J. Bonache, and F. Martin, "SRR- and CSRR-based metamaterial transmission lines: Modeling and comparison," Proceeding of 2009 IEEE MTT-S International Microwave Workshop Series on Signal Integrity and High-Speed Interconnects, 49–52, Guadalajara, Mexico, April 2009.
    [36] Mohammad Hossein Zarifi, Senior Member, IEEE, and Mojgan Daneshmand, Senior Member, IEEE, "Monitoring Solid Particle Deposition in Lossy Medium Using Planar Resonator Sensor," IEEE Sensors Journal, 2017.
    [37] F. Aznar, M. Gil, J. Bonache, L. Jelinek, J. Baena, R. Marqués, et al., "Characterization of miniaturized metamaterial resonators coupled to planar transmission lines through parameter extraction," Journal of Applied Physics, vol. 104, p. 114501, 2008.
    [38] Paris Vélez, Lijuan Su, Katia Grenier, Javier Mata-Contreras, David Dubuc, and Ferran Martín, "Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids," IEEE SENSORS JOURNAL, VOL. 17, NO. 20, OCTOBER 15, 2017.
    [39] J. L. Bohorquez, A. P. Chandrakasan, and J. L. Dawson, "Frequency-Domain Analysis of Super-Regenerative Amplifiers, " IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 2882–2894, Dec. 2009.
    [40] E. A. Keehr and A. Hajimiri, "Successive Regeneration and Adaptive Cancellation of Higher Order Intermodulation Products in RF Receivers," IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1379–1396, May 2011.
    [41] Chang S. The meridian system and mechanism of acupuncture—a comparative review. Part 1: the meridian system. Taiwan J Obstet Gynecol, 2013.
    [42] P. H. Charlton, T. Bonnici, L. Tarassenko, J. Alastruey, D. A. Clifton, R. Beale, and P. J. Watkinson, "Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants," Physiol Meas, vol. 38, no. 5, pp. 669–690, 2017.

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE