| 研究生: |
謝昀恆 Hsieh, Yun-Heng |
|---|---|
| 論文名稱: |
Ca摻雜P型IGZO薄膜之製備及其應用於光感測元件 The Fabrications of P-type IGZO: Ca thin films and Its Applications as Photo-Detectors |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 氧化銦鎵鋅 、磁控濺鍍法 、二極體 、P型薄膜 |
| 外文關鍵詞: | IGZO, RF sputter, diode, P-type |
| 相關次數: | 點閱:71 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在於開發磁控濺鍍法鍍製摻雜鈣 (Ca) 元素的氧化銦鎵鋅 (IGZO) 薄膜,靶材的部分由工研院提供,透過燒結使得Ca取代IGZO的In元素,製備出P型IGZO:Ca塊材;目前沒有文獻製作出P型IGZO:Ca薄膜,大多是針對N型IGZO薄膜進行研究。
實驗主要探討不同功率下P型IGZO:Ca薄膜利用室溫磁控濺鍍法製備,分別於60瓦與80瓦得到P型IGZO:Ca薄膜。利用XRD與光學分析,了解薄膜的結晶相及光學特性,XPS探討IGZO:Ca薄膜的組成比例以及氧空缺所造成的影響。
搭配霍爾量測確認薄膜半導體特性,確認適當的P型IGZO薄膜參數,最後搭配N型矽基板製作成二極體元件(diode),並觀察元件電性,是否具備整流特性。
從本實驗中得到以下的重要結果: (一) Ca 摻雜IGZO的薄膜特性為非結晶相的透明薄膜。(二) 60 W、80 W的IGZO薄膜具有P型的特性產生,該半導體變化與氧空缺及薄膜組成比例有關。(三) 60 W、80 W與n型矽基板接觸時具備整流特性分別為45.3及34.2;且在光感測器的應用方面,60 W的二極體有846.5的增益。
Summary
The main purpose of this thesis is to fabricate IGZO: Ca films by using the radio-frequency magnetron sputtering technique. The target is provided by the Industrial Technology Research Institute. In order to fabricate a P-type IGZO: Ca films, the In element in IGZO will be replaced by the Ca element through sintering. Nowadays there are no documents describing how to fabricate P-type IGZO: Ca films, and all of the researches are progressed under the situation by using the N-type IGZO film.
Experiments in this thesis mainly focus on the procedure of P-type IGZO: Ca films utilizing magnetron sputtering at room temperature. P-type IGZO: Ca films are obtained at 60 W and 80 W. By the help of XRD and optical analysis, the film’s crystal phase and optical properties can be understood. And by using XPS, the IGZO: Ca film’s composition ratio and oxygen vacancy can be investigated.
The thin film semiconductor properties can be confirmed by matching the Hall measurements. When the appropriate P-type IGZO film parameters are decided, the N-type silicon substrate can be arranged to create diode elements. Finally, the electrical components will be observed, to verify they have rectifying properties.
[1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M.
Hirano, H. Hosono, Nature. 432 (2004) 488-492.
[2] J.-L. Wu, H.-Y. Lin, B.-Y. Su, Y.-C. Chen, S.-Y.
Chu, S.-Y. Liu, C.-C. Chang, C.-J. Wu, Journal of
Alloys and Compounds. 592 (2014) 35-41.
[3] K. Terada, H. Muta, Japanese Journal of Applied
Physics. 18 (1979) 953.
[4] D. Jiang, L. Li, H. Chen, H. Gao, Q. Qiao, Z. Xu,
S. Jiao, Applied Physics Letters. 106 (2015) 171103.
[5] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H.
Kumomi, K. Nomura, T. Kamiya, H. Hosono, Applied
physics letters. 89 (2006) 2123.
[6] G.H. Kim, D.L. Kim, B. Du Ahn, S.Y. Lee, H.J. Kim,
Microelectronics Journal. 40 (2009) 272-275.
[7] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.
Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H.
Morkoc, Journal of applied physics. 98 (2005)
041301.
[8] M. Jin, J. Feng, Z. De-Heng, M. Hong-lei, L.
Shu-Ying, Thin solid films. 357 (1999) 98-101.
[9] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T.
Kamiya, M. Hirano, H. Hosono, Thin solid films.
486(2005) 38-41.
[10] S. Parthiban, J.-Y. Kwon, Journal of Materials
Research. 29 (2014) 1585-1596.
[11] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M.
Hirano, H. Hosono, Japanese Journal of Applied
Physics. 45 (2006) 4303.
[12] P.K. Nayak, T. Busani, E. Elamurugu, P. Barquinha,
R. Martins, Y. Hong, E. Fortunato, Applied Physics
Letters. 97 (2010) 183504.
[13] H. Hosono, Journal of Non-Crystalline Solids. 352
(2006) 851-858.
[14] H.-C. Wu, T.-S. Liu, C.-H. Chien, ECS Journal of
Solid State Science and Technology. 3 (2014)
Q24-Q27.
[15] J. Raja, K. Jang, N. Balaji, J. Yi, Semiconductor
Science and Technology. 28 (2013) 115010.
[16] Q. Li, Y. Li, L. Gao, F. Ma, Z. Song, K. Xu, RSC
Advances. 6 (2016) 42347-42352.
[17] H.-H. Nahm, Y.-S. Kim, Applied Physics Letters. 102
(2013) 152101.
[18] S.-J. Liu, S.-H. Su, H.-W. Fang, J.-H. Hsieh, J.-Y.
Juang, Applied Surface Science. 257 (2011)
10018-10021.
[19] S.-J. Liu, H.-W. Fang, J.-H. Hsieh, J.-Y. Juang,
Materials Research Bulletin. 47 (2012) 1568-1571.
[20] R. Krishnan, J. Thirumalai, R. Chandramohan,
Journal of Nanostructure in Chemistry. 3 (2013) 1-4.
[21] A. Mittiga, E. Salza, F. Sarto, M. Tucci, R.
Vasanthi, Applied Physics Letters. 88 (2006)
163502-163502.
[22] H. Sato, T. Minami, S. Takata, T. Yamada, Thin
solid films. 236 (1993) 27-31.
[23] S. Pan, G. Li, L. Wang, Y. Shen, Y. Wang, T. Mei,
X. Hu, Appl. Phys. Lett. 95 (2009) 1-3.
[24] L. Dai, H. Deng, J. Chen, M. Wei, Solid state
communications. 143 (2007) 378-381.
[25] K. Reichelt, Vacuum. 38 (1988) 1083-1099.
[26] F. Shinoki, A. Itoh, Journal of Applied Physics. 46
(1975) 3381-3384.
[27] E. Janczak-Bienk, H. Jensen, G. Sørensen, Materials
Science and Engineering: A. 140 (1991) 696-701.
[28] M. Riordan, L. Hoddeson, IEEE spectrum. 34 (1997)
46-51.
[29] C.-T. Sah, R.N. Noyce, W. Shockley, Proceedings of
the IRE. 45 (1957) 1228-1243.
[30] J. Moll, Proceedings of the IRE. 46 (1958)
1076-1082.
[31] T.-H. Moon, M.-C. Jeong, W. Lee, J.-M. Myoung,
Applied Surface Science. 240 (2005) 280-285.
[32] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Orita,
M. Hirano, T. Suzuki, C. Honjyo,
Y. Ikuhara, H. Hosono, Journal of applied physics.
95 (2004) 5532-5539.
[33] K. Ide, K. Nomura, H. Hiramatsu, T. Kamiya, H.
Hosono, Journal of Applied Physics.
111 (2012) 073513.
[34] 民波, 怡文, 颜, 薄膜技術與薄膜材料, 五南图书出版公
司, 2007.
[35] J.-H. Shin, D.-K. Choi, Journal of the Korean
Physical Society. 53 (2008).
[36] B.-Y. Su, S.-Y. Chu, Y.-D. Juang, S.-Y. Liu,
Journal of Alloys and Compounds. 580
(2013) 10-14.
[37] X. Fan, H. Sun, Z. Shen, J.-L. Kuo, Y. Lu, Journal
of Physics: Condensed Matter. 20 (2008) 235221.
[38] P. Cao, D. Zhao, J. Zhang, D. Shen, Y. Lu, B. Yao,
B. Li, Y. Bai, X. Fan, Applied Surface Science. 254
(2008) 2900-2904.