簡易檢索 / 詳目顯示

研究生: 謝昀恆
Hsieh, Yun-Heng
論文名稱: Ca摻雜P型IGZO薄膜之製備及其應用於光感測元件
The Fabrications of P-type IGZO: Ca thin films and Its Applications as Photo-Detectors
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 62
中文關鍵詞: 氧化銦鎵鋅磁控濺鍍法二極體P型薄膜
外文關鍵詞: IGZO, RF sputter, diode, P-type
相關次數: 點閱:71下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於開發磁控濺鍍法鍍製摻雜鈣 (Ca) 元素的氧化銦鎵鋅 (IGZO) 薄膜,靶材的部分由工研院提供,透過燒結使得Ca取代IGZO的In元素,製備出P型IGZO:Ca塊材;目前沒有文獻製作出P型IGZO:Ca薄膜,大多是針對N型IGZO薄膜進行研究。
    實驗主要探討不同功率下P型IGZO:Ca薄膜利用室溫磁控濺鍍法製備,分別於60瓦與80瓦得到P型IGZO:Ca薄膜。利用XRD與光學分析,了解薄膜的結晶相及光學特性,XPS探討IGZO:Ca薄膜的組成比例以及氧空缺所造成的影響。
    搭配霍爾量測確認薄膜半導體特性,確認適當的P型IGZO薄膜參數,最後搭配N型矽基板製作成二極體元件(diode),並觀察元件電性,是否具備整流特性。
    從本實驗中得到以下的重要結果: (一) Ca 摻雜IGZO的薄膜特性為非結晶相的透明薄膜。(二) 60 W、80 W的IGZO薄膜具有P型的特性產生,該半導體變化與氧空缺及薄膜組成比例有關。(三) 60 W、80 W與n型矽基板接觸時具備整流特性分別為45.3及34.2;且在光感測器的應用方面,60 W的二極體有846.5的增益。

    Summary

    The main purpose of this thesis is to fabricate IGZO: Ca films by using the radio-frequency magnetron sputtering technique. The target is provided by the Industrial Technology Research Institute. In order to fabricate a P-type IGZO: Ca films, the In element in IGZO will be replaced by the Ca element through sintering. Nowadays there are no documents describing how to fabricate P-type IGZO: Ca films, and all of the researches are progressed under the situation by using the N-type IGZO film.
    Experiments in this thesis mainly focus on the procedure of P-type IGZO: Ca films utilizing magnetron sputtering at room temperature. P-type IGZO: Ca films are obtained at 60 W and 80 W. By the help of XRD and optical analysis, the film’s crystal phase and optical properties can be understood. And by using XPS, the IGZO: Ca film’s composition ratio and oxygen vacancy can be investigated.
    The thin film semiconductor properties can be confirmed by matching the Hall measurements. When the appropriate P-type IGZO film parameters are decided, the N-type silicon substrate can be arranged to create diode elements. Finally, the electrical components will be observed, to verify they have rectifying properties.

    第一章:緒論 1 1.1前言 1 1.2研究動機 1 1.3論文架構 2 第二章:文獻回顧 3 2.1氧化物半導體簡介 3 2.1.1氧化鋅之基本特性 3 2.1.2氧化銦鎵鋅之基本特性 7 2.1.3 氧化銦鎵鋅薄膜摻雜相關文獻 11 2.2薄膜沉積原理 13 2.2.1 電漿之基礎理論 13 2.2.2 射頻濺鍍法 14 2.2.3 反應性濺鍍 18 2.3二極體原理 19 2.3.1 PN 接面二極體之電流電壓特性(I-V Characteristic) 19 2.4二極體光偵測器 24 2.4.1 光偵測器介紹 24 2.4.2二極體光偵測器工作原理 25 第三章: 實驗與量測方法 26 3.1實驗流程 26 3.2實驗步驟 27 3.2.1基板清洗 27 3.2.2 IGZO薄膜濺鍍 28 3.2.3 電極製備 29 3.2.4 退火條件 29 3.3 分析儀器 30 3.3.1 Alpha-step profilometer (α-step) 30 3.3.2 SEM 30 3.3.3 AFM 30 3.3.4 X-ray photoelectron spectroscopy (XPS) 31 3.3.5 XRD 31 3.3.6感應耦合電漿原子發射光譜儀 (Inductively coupled plasma mass spectroscopy , ICP) 32 3.3.7 UPS 32 3.3.8 Hall measurement 32 3.3.9光穿透率量測 (Transmittance) 33 3.3.10 橢圓偏光儀 33 3.3.11電性量測(Agilent-4155C) 33 第四章:實驗結果與討論 35 4.1 薄膜分析 35 4.1.1濺鍍速率 35 4.1.2 IGZO 結晶相分析 37 4.1.3 IGZO 表面形貌分析 38 4.1.4 XPS元素組成分析 40 4.1.5 IGZO光學特性分析 43 4.1.6 Hall measurement 46 4.1.7 UPS 48 4.1.8 P型IGZO-Ca薄膜機制探討 51 4.2 IGZO 二極體特性 55 4.2.1 電性量測 55 4.2.2 光學特性 58 第五章:結論與未來展望 59 5.1結論 59 5.2 未來展望 60 第六章:參考文獻 61

    [1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M.
    Hirano, H. Hosono, Nature. 432 (2004) 488-492.
    [2] J.-L. Wu, H.-Y. Lin, B.-Y. Su, Y.-C. Chen, S.-Y.
    Chu, S.-Y. Liu, C.-C. Chang, C.-J. Wu, Journal of
    Alloys and Compounds. 592 (2014) 35-41.
    [3] K. Terada, H. Muta, Japanese Journal of Applied
    Physics. 18 (1979) 953.
    [4] D. Jiang, L. Li, H. Chen, H. Gao, Q. Qiao, Z. Xu,
    S. Jiao, Applied Physics Letters. 106 (2015) 171103.
    [5] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H.
    Kumomi, K. Nomura, T. Kamiya, H. Hosono, Applied
    physics letters. 89 (2006) 2123.
    [6] G.H. Kim, D.L. Kim, B. Du Ahn, S.Y. Lee, H.J. Kim,
    Microelectronics Journal. 40 (2009) 272-275.
    [7] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.
    Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H.
    Morkoc, Journal of applied physics. 98 (2005)
    041301.
    [8] M. Jin, J. Feng, Z. De-Heng, M. Hong-lei, L.
    Shu-Ying, Thin solid films. 357 (1999) 98-101.
    [9] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T.
    Kamiya, M. Hirano, H. Hosono, Thin solid films.
    486(2005) 38-41.
    [10] S. Parthiban, J.-Y. Kwon, Journal of Materials
    Research. 29 (2014) 1585-1596.
    [11] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M.
    Hirano, H. Hosono, Japanese Journal of Applied
    Physics. 45 (2006) 4303.
    [12] P.K. Nayak, T. Busani, E. Elamurugu, P. Barquinha,
    R. Martins, Y. Hong, E. Fortunato, Applied Physics
    Letters. 97 (2010) 183504.
    [13] H. Hosono, Journal of Non-Crystalline Solids. 352
    (2006) 851-858.
    [14] H.-C. Wu, T.-S. Liu, C.-H. Chien, ECS Journal of
    Solid State Science and Technology. 3 (2014)
    Q24-Q27.
    [15] J. Raja, K. Jang, N. Balaji, J. Yi, Semiconductor
    Science and Technology. 28 (2013) 115010.
    [16] Q. Li, Y. Li, L. Gao, F. Ma, Z. Song, K. Xu, RSC
    Advances. 6 (2016) 42347-42352.
    [17] H.-H. Nahm, Y.-S. Kim, Applied Physics Letters. 102
    (2013) 152101.
    [18] S.-J. Liu, S.-H. Su, H.-W. Fang, J.-H. Hsieh, J.-Y.
    Juang, Applied Surface Science. 257 (2011)
    10018-10021.
    [19] S.-J. Liu, H.-W. Fang, J.-H. Hsieh, J.-Y. Juang,
    Materials Research Bulletin. 47 (2012) 1568-1571.
    [20] R. Krishnan, J. Thirumalai, R. Chandramohan,
    Journal of Nanostructure in Chemistry. 3 (2013) 1-4.
    [21] A. Mittiga, E. Salza, F. Sarto, M. Tucci, R.
    Vasanthi, Applied Physics Letters. 88 (2006)
    163502-163502.
    [22] H. Sato, T. Minami, S. Takata, T. Yamada, Thin
    solid films. 236 (1993) 27-31.
    [23] S. Pan, G. Li, L. Wang, Y. Shen, Y. Wang, T. Mei,
    X. Hu, Appl. Phys. Lett. 95 (2009) 1-3.
    [24] L. Dai, H. Deng, J. Chen, M. Wei, Solid state
    communications. 143 (2007) 378-381.
    [25] K. Reichelt, Vacuum. 38 (1988) 1083-1099.
    [26] F. Shinoki, A. Itoh, Journal of Applied Physics. 46
    (1975) 3381-3384.
    [27] E. Janczak-Bienk, H. Jensen, G. Sørensen, Materials
    Science and Engineering: A. 140 (1991) 696-701.
    [28] M. Riordan, L. Hoddeson, IEEE spectrum. 34 (1997)
    46-51.
    [29] C.-T. Sah, R.N. Noyce, W. Shockley, Proceedings of
    the IRE. 45 (1957) 1228-1243.
    [30] J. Moll, Proceedings of the IRE. 46 (1958)
    1076-1082.
    [31] T.-H. Moon, M.-C. Jeong, W. Lee, J.-M. Myoung,
    Applied Surface Science. 240 (2005) 280-285.
    [32] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Orita,
    M. Hirano, T. Suzuki, C. Honjyo,
    Y. Ikuhara, H. Hosono, Journal of applied physics.
    95 (2004) 5532-5539.
    [33] K. Ide, K. Nomura, H. Hiramatsu, T. Kamiya, H.
    Hosono, Journal of Applied Physics.
    111 (2012) 073513.
    [34] 民波, 怡文, 颜, 薄膜技術與薄膜材料, 五南图书出版公
    司, 2007.
    [35] J.-H. Shin, D.-K. Choi, Journal of the Korean
    Physical Society. 53 (2008).
    [36] B.-Y. Su, S.-Y. Chu, Y.-D. Juang, S.-Y. Liu,
    Journal of Alloys and Compounds. 580
    (2013) 10-14.
    [37] X. Fan, H. Sun, Z. Shen, J.-L. Kuo, Y. Lu, Journal
    of Physics: Condensed Matter. 20 (2008) 235221.
    [38] P. Cao, D. Zhao, J. Zhang, D. Shen, Y. Lu, B. Yao,
    B. Li, Y. Bai, X. Fan, Applied Surface Science. 254
    (2008) 2900-2904.

    下載圖示 校內:2021-07-29公開
    校外:2021-07-29公開
    QR CODE