簡易檢索 / 詳目顯示

研究生: 楊松齡
Yang, Song-Ling
論文名稱: 高機械品質因子之無鉛鈮酸鈉鉀基壓電陶瓷開發及其在壓電變壓器之應用
Development of Lead-Free (Na0.5K0.5)NbO3–Based Piezoelectric Ceramics with High Mechanical Quality Factor and Their Applications on Piezoelectric Transformers
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 120
中文關鍵詞: 無鉛壓電陶瓷高機械品質因子壓電變壓器
外文關鍵詞: Lead-free piezoelectric ceramics, high mechanical quality factor, piezoelectric transformer
相關次數: 點閱:132下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這論文中主要是研究高品質機械因子之無鉛鈮酸鈉鉀基(NKN-based)壓電陶瓷開發及其在壓電變壓器之應用。本論文開發出燒結促進劑CuTa2O6(CT)化合物並加入鉛鈮酸鈉鉀陶瓷中,因此獲得高密度與高機電偶合係數之陶瓷體,此外,鉛鈮酸鈉鉀陶瓷之機械品質因子Qm也從67增加至1,550。添加燒結促劑CT後之NKN陶瓷可獲得良好的壓電特性:kp:42.5%;kt:49.1%;Qm:1,550;壓電係數d33:96pC/N. 另一方面,補償NKN陶瓷也是一重要因素,因為適當補償將會影響到微結構及壓電特性。在NKN摻雜CT陶瓷中,氧空缺的濃度主導著Qm值的大小。然而,在非當量NKN摻雜CT的陶瓷中,最大的Qm值並非對應到較高濃度的氧空缺,主要因素猜測是因為氧空缺的形成是由A位置的缺陷與銅離子取代鈮離子所組成,最直接影響到Qm值的大小是少價數取代多價數後所產生的氧空缺,而並非是非當量所造成的氧空缺。
    氧化銅對於提升壓電特性之NKN陶瓷而言也是一不錯之添加物。使用傳統法(MO method)所製備之NKN摻雜CuO陶瓷(NKNCx)呈現的微結構為不均勻的,相反的,當NKN摻雜CuO陶瓷使用二階段煆燒法(TC method)製備呈現出較均勻之微結構,且電特性也隨之改善。使用二階段煆燒法所製備的NKN摻雜CuO陶瓷其Qm值與介電常數均比使用傳統法所製備出的陶瓷體分別多出21%與25%。在NKN摻雜CuO陶瓷中,藉由量測並計算出內建電場(internal bias field)與活化能(activation energy)來確認氧空缺的存在,使用二階段煆燒法所製備的NKN摻雜CuO陶瓷因為較多氧空缺的形成而使得內建電場也隨之增加,此外低活化能也對應到高的Qm值。使用二階段煆燒法所製備的NKN摻雜CuO陶瓷之最大Qm值可達到2,000以上,其他特性包含密度、介電損失、kp、壓電係數d33和介電常數分別為4.488 g/cm3, 0.15 %, 41.5 %, 95 pC/N和280,這些值都比非當量NKN摻雜CT陶瓷的特性要來的好。比較NKN摻雜ZnO(NKNZx)與CuO陶瓷,有著不同的結果,ZnO摻雜並沒有明顯的提升NKN陶瓷體的壓電特性。NKN摻雜ZnO陶瓷之Qm值並沒有像摻雜CuO那樣子高,藉由內建電場所量測的值接近0,說明了並無氧空缺的形成。在NKN摻雜ZnO陶瓷的壓電特性之所以會有些微的提升主要還是受到密度的影響。
    在元件應用上,探討利用兩種不同製備陶瓷方式,製作成壓電變壓器(PTs),並比較其壓電變壓器之性能。由實驗結果得知,使用二階段煆燒法合成的陶瓷所製作出的壓電變壓器均能提升變壓器之輸出功率與溫度穩定性,主要因素是受到陶瓷體本身有較小之共振阻抗。此外還發現到,壓電變壓器之輸出功率受到共振阻抗的影響比Qm值來的大。為使能應用在電子安定器上,製備不同之壓電變壓器的電極面積,考量到壓電變壓器在負載為1kΩ下之效率、升壓比與元件溫升,因此採用內徑為15mm的電極面積,並結合電路設計,成功驅動13-W T5螢光燈燈管。當燈管驅動時,壓電變壓器之溫升與效別為6oC與82.4%(壓電變壓器+電路)。目前相關研究中,此輸出功率是最大的。

    In this thesis, development of lead-free (Na0.5K0.5)NbO3-based (NKN-based) piezoelectric ceramics with high mechanical quality factor (Qm) and their application on piezoelectric transformers, was investigated. Sintering aid CuTa2O6 (CT) compound was developed and then doped into NKN ceramics. A high bulk density (4.595 g/cm3) and electromechanical coupling factors (kp, kt) were obtained. Moreover, the mechanical quality factor (Qm) also increased from 67 to 1,550 as the concentrations of CT doping from 0 to 0.5 mole %. NKN ceramics with sintering aid CT doping showed good piezoelectric properties: kp: 42.5 %; kt: 49.1%; Qm: 1,550; and d33: 96 pC/N. On the other hand, the compensation for NKN ceramics was also an important role to affect the microstructure and piezoelectric properties. In CT-doped NKN ceramics, the concentration of oxygen vacancy dominates the magnitude of Qm value. However, non-stoichiometry NKN with CT doping showed the Qm value did not correspond to a higher concentration of oxygen vacancies. This reason guesses that the oxygen vacancies were induced from the defect of A-site and the replacement of Nb ions by Cu ions. The magnitude of Qm value was directly attributed to the formation of oxygen vacancy which was induced as the high valence ion (Nb5+) be substituted by low valence ion (Cu2+).
    Copper oxide was also a good dopant for enhancing the piezoelectric properties of NKN ceramics. The microstructure of CuO-doped NKN (NKNCx) ceramics prepared using the conventional mixed oxide method (MO method) exhibited obviously inhomogeneous microstructure. In contrast, the two-step calcination process (TC method) improved the compositional homogeneity as well as the electrical properties. The Qm value and dielectric constant (ε33T/ε0) of NKNCx ceramics prepared using the TC method were therefore by 21 % and 25 % better, respectively. The internal bias field and activation energy were measured and calculated to confirm the presence of oxygen vacancies. The ceramics prepared using the TC method exhibited the formation of more oxygen vacancies, resulting in an increase in the internal bias field. In addition, low activation energy corresponded to high Qm value. The maximum Qm value of NKNCx ceramics prepared using the TC method was more than 2,000 and other properties, including the bulk density, dielectric loss, kp, d33 and ε33T/ε0, were 4.488 g/cm3, 0.15 %, 41.5 %, 95 pC/N and 280, respectively. Unlike CuO, ZnO-doped NKN (NKNZx) ceramics could not significantly enhance the piezoelectric properties of the samples. The Qm values of the NKNZx ceramics were not as high as those of NKNCx ceramics due to a lack of oxygen vacancies in the former. The internal bias field was used to demonstrate the presence of oxygen vacancies. In ZnO-doped NKN ceramics, the piezoelectric properties only improved slightly because ZnO used as a sintering aid which enhanced the densification of samples. A high Qm value was obtained for CuO-doped NKN ceramics mainly due to the formation of oxygen vacancies.
    The performances of piezoelectric transformers (PTs) made with two substrates were compared (the ceramics prepared using the MO and TC methods). Experimental results showed that the output power and temperature stability of PTs were enhanced due to lower resonant impedance of the ceramics prepared using the TC method. In addition, the output power of PTs was more affected by the resonant impedance than by the mechanical quality factor (Qm) of the ceramics. For application on ballasts, PTs with different electrode areas were fabricated using the CuO-doped NKN ceramics prepared using the TC method. Considering the efficiency, voltage gain, and raising temperature of PTs at a load resistance of 1 kΩ, PTs with an electrode with an inner diameter of 15 mm were combined with the circuit design for driving a 13-W T5 fluorescent lamp. A raising temperature of 6 oC and a total efficiency of 82.4 % (PT and circuit) were obtained using the present PTs. This output power in the lead-free disk-type PTs was the best reported so far.

    Abstract...............................................I 摘要...................................................IV 致謝...................................................VI Table of Contents......................................VII List of Tables.........................................X List of Figures........................................XII Chapter 1 Introduction 1.1 Piezoelectric Ceramics.............................1 1.2 Application on Piezoelectric Transformers..........3 1.3 Points of this Research............................4 Chapter 2 Theory and Literature Review 2.1 Piezoelectric Effect...............................6 2.2 Tolerance Factor of Perovskite Structure...........7 2.3 Piezoelectric Resonator............................8 2.4 Mechanism of Low-Temperature Sintering.............8 2.5 Ferroelectricity...................................9 2.6 Hardening Effect and Internal Bias Field...........10 2.7 Arrhenius Law and Relaxation Time of Polarization..11 2.8 Basic Theory of Piezoelectric Transformers.........12 Chapter 3 Experimental Procedures and Measurements 3.1 Preparation of Piezoelectric Ceramics 3.1.1 Conventional mixed-oxide process.................19 3.1.2 Two-step calcination process.....................20 3.2 Measurements of Microstructure Properties 3.2.1 X-ray diffraction analysis.......................21 3.2.2 X-ray photoelectron spectroscopy analysis........21 3.2.3 Scanning electron microscope and energy dispersive spectrometer analysis..................................22 3.2.4 Raman scattering spectra analysis................22 3.2.5 Bulk density analysis............................22 3.3 Measurements of Electrical Properties 3.3.1 Possion’s ratio..................................23 3.3.2 Electrochemical coupling factor..................23 3.3.3 Mechanical quality factor........................24 3.3.4 Piezoelectric coefficient........................24 3.3.5 Dielectric constant..............................24 3.3.6 The Curie temperature............................25 3.3.7 Temperature coefficient of capacitance and resonance frequency in the static and dynamic conditions.........25 3.3.8 Energy activation................................25 3.3.9 Ferroelectric hysteresis loops...................26 3.4 Fabrication of Disk-Type Piezoelectric Transformers 3.4.1 Fabrication of piezoelectric transformers........26 3.4.2 Measurements of piezoelectric transformer........27 Chapter 4 Effects of CuTa2O6 doping on NKN and non-stoichiometry NKN ceramics 4.1 Introduction.......................................31 4.2 CuTa2O6-Doped NKN Ceramics 4.2.1 Physical properties..............................32 4.2.2 Piezoelectric and dielectric properties..........34 4.3 Non-Stoichiometry NKN Ceramics with CT Additives Doping 4.3.1 XRD, SEM and electrical properties analysis......37 4.3.2 Internal bias field, activation energy and Raman analysis...............................................39 Chapter 5 Effects of modified process on CuO- and ZnO-doped NKN ceramics 5.1 Introduction.......................................55 5.2 CuO-doped NKN Ceramics 5.2.1 Physical properties..............................55 5.2.2 Bulk density and electrical properties analysis..59 5.2.3 Effects of Ea, Ei and impedance values on the Qm value..................................................61 5.3 Compared ZnO-Doped with CuO-Doped NKN Ceramics 5.3.1 XRD, lattice volume and XPS analysis.............65 5.3.2 Piezoelectric properties and Ei value analysis...66 Chapter 6 Fabrication and investigation of piezoelectric transformers 6.1 Introduction.......................................83 6.2 Effects of Improved Process on the Performances of PTs 6.2.1 Electrical properties of the ceramics prepared using different methods......................................83 6.2.2 Equivalent circuit and performances of PTs.......84 6.3 Effects of Electrode Area on the Performances of PTs 6.3.1 Equivalent parameters of PTs.....................86 6.3.2 The measurement results of PT with three different electrode areas........................................87 6.4 PTs for Application in Electronic Ballasts 6.4.1 Electrode area selection of PTs..................89 6.4.2 Open-loop circuit design for driving a 13-W T5 fluorescent lamp.......................................90 Chapter 7 Summary and Recommendations for Future Work 7.1 Summary................................................105 7.2 Suggestions for Future Work........................107 References.............................................109

    [1] A. J. Moulson, and J. M. Herbert, Electroceramics 2nd ed. John Wiley and Sons; New York (2003).
    [2] Uchino K, “Piezoelectric actuator and ultrasonic motors,” Kluwer Academic Publisher; Massachusetts (1996).
    [3] L. Hwang, J. Yoo, E. Jang, D. Oh, Y. Jeong, I. Ahn, and M. Cho, “Fabrication and characteristics of PDA LCD backlight driving circuits using piezoelectric transformer,” Sens. Actuators A, Phys., 115, 73-78 (2004).
    [4] S. Y. Chu, T. Y. Chen, I. T Tsai, and W. Water, “Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device,” Sens. Actuators A, Phys., 113, 198-203 (2004).
    [5] T. B. Weston, A. H. Webster, and V. M. Mcnamara, “Lead zirconate-lead titanate piezoelectric ceramics with iron oxide additions.” J. Am. Ceram. Soc., 52, 253-257 (1969).
    [6] M. Kondo, M. Hida, M. Tsukada, K. Kurihara, and N. Kamehara, “Piezoelectric properties of Pb(Ni1/3,Nb2/3)O3–PbTiO3–PbZrO3 ceramics,” Jpn. J. Appl. Phys., 36, 6043-6045 (1997).
    [7] Y. Guo, K. Kakimoto, and H. Ohsato, “Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–SrTiO3 ceramics,” Solid State Commun., 129, 279-284 (2004).
    [8] G. H. Haertling, “Properties of hot-pressed ferroelectric alkali niobate ceramics,” J. Am. Ceram. Soc.. 50, 329-330 (1967).
    [9] R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki, and M. Itoh, “Piezoelectric properties of spark-plasma-sintered (Na0.5K0.5)NbO3–PbTiO3 ceramics,” Jpn. J. Appl. Phys., 41, 7119-7122 (2002).
    [10] M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, and J. Holc, “New lead free relaxors based on the K0.5Na0.5NbO3–SrTiO3 solid solution,” J. Mater. Res., 19, 1849-1854 (2004).
    [11] Y. Guo, K. Kakimoto, and H. Ohsato, “Structure and electrical properties of lead-free (Na0.5K0.5)NbO3–BaTiO3 ceramics,” Jpn. J. Appl. Phys., 43, 6662-6666 (2004).
    [12] R. C. Chang, S. Y. Chu, Y. F. Lin, C. S. Hong, P. C. Kao, and C. H. Lu, “The effects of sintering temperature on the properties of (Na0.5K0.5)NbO3–CaTiO3 based lead-free ceramics,” Sens. Actuators, A, Phys., 138, 355-360 (2007).
    [13] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nat., 432, 84-87 (2004).
    [14] Z. Yang, Y. Chang, B. Liu, and L. Wei, “Effects of composition on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3–LiSbO3 ceramics,” Mater. Sci. Eng. A, 432, 292-298 (2006).
    [15] Y. Guo, K. Kakimoto, and H. Ohsato, “Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics,” Appl. Phys. Lett., 85, 4121-4123 (2004).
    [16] Y. Guo, K. Kakimoto, and H. Ohsato, “(Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics,” Mater. Lett., 59, 241-244 (2005).
    [17] M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, “Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics,” J. Am. Ceram. Soc., 88 1190-1196 (2005).
    [18] M. Matsubara, K. Kikuta, and S. Hirano, “Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3−K5.4CuTa10O29 ceramics,” J. Appl. Phys., 97, 114105 (2005).
    [19] D. Lin, K. W. Kwok, and H. L. W. Chan, “Piezoelectric properties and hardening behavior of K5.4Cu1.3Ta10O29-doped K0.5Na0.5NbO3 ceramics,” J. Appl. Phys., 103, 064105 (2008).
    [20] B. Malic, J. Bernard, J. Holc, D. Jenjko, and M. Kosec, “Alkaline-earth doping in (K, Na)NbO3 based piezoceramics,” J. Eur. Ceram. Soc., 25, 2707-2711 (2005).
    [21] E. Li, H. Kakemoto, S. Wada, and T. Tsurumi, “Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics,” J. Am. Ceram. Soc., 90, 1787-1791 (2007).
    [22] E. Li, H. Kakemoto, S. Wada, and T. Tsurumi, “Enhancement of Qm by co-doping of Li and Cu to potassium sodium niobate lead-free ceramics,” IEEE Trans. Ultrason., Ferroelectr., Freq. Contr., 55, 980-987 (2008).
    [23] B. Malic, J. Bernard, J. Holc, D. Jenjko, and M. Kosec, “Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics,” J. Eur. Ceram. Soc., 28, 1911-1996 (2008).
    [24] N. M. Hagh, B. Jadidian, E. Ashbahian, and A. Safari, “Lead-free piezoelectric ceramic transducer in the donor-doped K1/2Na1/2NbO3 solid solution system,” IEEE Trans. Ultrason., Ferroelectr., Freq. Contr., 55, 214-224 (2008).
    [25] K. Kakimoto, Y. Hayakawa, and I. Kagomiya “Low-temperature sintering of dense (Na, K)NbO3 piezoelectric ceramics using the citrate precursor technique,” J. Am. Ceram. Soc., 93, 2423-2426 (2010).
    [26] K. Bhattacharyya, and A. K. Tyagi, “A novel soft-chemical method for the synthesis of nanocrystalline MNbO3 (M=Na, K),” J. Alloy. Com., 470, 580-583 (2009).
    [27] S. L. Swartz, and T. R. Shrout, “Fabrication of perovskite lead magnesium niobate,” Mater. Res. Bull., 17, 1245-1250 (1982).
    [28] S. Kim, G. S. Lee, and T. R. Shrout, “Fabrication of fine-Grain piezoelectric ceramics using reactive calcination,” J. Mater. Sci., 26, 4411-4415 (1991).
    [29] G. Robert, M. D. Maeder, D. Damianovic, and N. Setter, “Synthesis of lead nickel niobate-lead zirconate titanate solid solutions by a B-site precursor method,” J. Am. Ceram. Soc., 84, 2860-2872 (2001).
    [30] C. C. Tsai, S. Y. Chu, and C. K. Liang, “Low-temperature sintered PMnN-PZT based ceramics using the B-site oxide precursor method for therapeutic transducers,” J. Alloy. Com., 478, 516-522 (2009).
    [31] Y. Wang, D. Damjanovic, N. Klein, E. Hollenstein, and N. Setter, “Compositional inhomogeneity in Li- and Ta-modified (K, Na)NbO3 ceramics,” J. Am. Ceram. Soc., 90, 3485-3489 (2007).
    [32] B. Fang, Y. Shan, K. Tezuka, and H. Imoto, “Reduction of dielectric losses in Pb(Fe1/2Nb1/2)O3-based ferroelectric ceramics,” Jpn. J. Appl. Phys., 44, 5035-5039 (2005).
    [33] P. Laoratanakul, A. V. Carazo, P. Bouchilloux, and K. Uchino, “Unipoled disk-type piezoelectric transformers,” Jpn. J. Appl. Phys., 41, 1446-1450 (2002).
    [34] C. A. Rosen, K. Fish, and H. C. Rothenberg, “Voltage mode active clamp PWM controller for high speed operation,” U. S. Patent, 2,830,274 (1958).
    [35] J. Yoo, C. Lee, Y. Jeong, K. Chung, D. Lee, and D. Paik, “Microstructure and piezoelectric properties of low temperature sintering PMN-PZT ceramics with the amount of Li2CO3 addition,” Mater. Chem. Phys., 90, 386-390 (2005).
    [36] Z. Yang, X. Chao, R. Zhang, Y. Chang, and Y. Chen, “Fabrication and electrical characteristics of piezoelectric PMN–PZN–PZT ceramic transformers,” Mater. Sci. Eng. B, 138, 277-283 (2007).
    [37] H. Shin, H. Ahn, and D. Y. Han, “Modeling and analysis of multilayer piezoelectric transformer,” Mater. Chem. Phys., 92, 616-620 (2005).
    [38] D. A. Berlincourt, “Piezoelectric starter and ballast for gaseous discharge lamps,” U. S. Patent, 3764848, 1973.
    [39] J. Yoo, K. Yoon, Y. Lee, S. Suh, J. Kim, and C. Yoo, “Electrical characteristics of the contour-vibration-mode piezoelectric transformer with ring/dot electrode area ratio,” Jpn. J. Appl. Phys., 39, 2680-2684 (2000).
    [40] J. Yoo, K. Yoon, S. Hwang, S. Suh, J. Kim, and C. Yoo, “Electrical characteristics of high power piezoelectric transformer for 28 W fluorescent lamp,” Sens. Actu. A, 90, 132-137 (2001).
    [41] W. G. Cady, “Piezoelectricity,” McGraw-Hill, New York (1946).
    [42] K. Uchino, “Ferroelectric Devices,” Marcel Dekker, Inc. New York (2000).
    [43] V. M. Goldschmidt, “Die Gesetze der Krystallochemie,” Naturwissenschaften, 14, 477-485 (1926).
    [44] P. Baettig, C. F. Schelle, R. Lesar, U. V. Waghmare, and N. A. Spaldin, “Theoretical prediction of new high-performance lead-free piezoelectrics,” Chem. Mater., 17, 1376-1380 (2005).
    [45] D. W. Dye, “The piezo-electric quartz resonator and its equivalent electrical circuit,” Proc. Phys. Soc., London, 38, 399-458 (1926).
    [46] S. Butterworth, “On electrically-maintained vibrations,” Proc. Phys. Soc., London, 27, 410-424 (1915).
    [47] IEEE standard on piezoelectricity, New York, 176, 42 (1978).
    [48] C. C. Tsai, “Development of low-temperature-sintering synthesis technique of piezoceramics with high mechanical quality factor, design and fabrication of high-power therapeutic transducers,” Ph. D. Dissertation, Department of Electronic Engineering, Southern Taiwan University, Tainan, Taiwan, R.O.C (2011).
    [49] R. M. German, “Liquid phase sintering,” Plenum Press, New York, (1985).
    [50] W. D. Kingery, “Densification during sintering in the presence of a liquid phase. 1. theory,” J. Appl. Phys., 30, 301-306 (1959).
    [51] D. L. Corker, R. W. Whatmore, E. Ringgaard, and W. W. Wolny, “Liquid-phase sintering of PZT ceramics,” J. Eur. Ceram. Soc., 20, 2039-2045 (2000).
    [52] M. Valant, D. Suvorov, R. C. Pullar, K. Sarma, and N. M. Alford, “Mechanism of low temperature sintering,” J. Eur. Ceram. Soc., 26, 2777-2783 (2006).
    [53] K. Uchino, “Ferroelectric devices,” Marcel Dekker, Inc., New York 3 (2003).
    [54] K. Othmon, “ferroelectrics,” Encyclopedia of Chemical Technology 3rd ed., v 10.
    [55] S. Takahashi, and M. Takahashi, “Effects of impurities on the mechanical quality factor of lead zirconate titanate ceramics,” Jpn. J. Appl. Phys., 11, 31-35 (1972).
    [56] S. Takahashi, “Internal bias field effects in lead zirconate-titanate ceramics doped with multiple impurities,” Jpn. J. Appl. Phys., 20, 95-101 (1981).
    [57] G. H. Jonker, “The nature of aging in ferroelectric ceramics,” J. Am. Ceram. Soc.. 55, 57-58 (1972).
    [58] K. Carl, and K. H. Hardtl, “Electrical after-effects in Pb (Ti, Zr)O3 ceramics,” Ferroelectr., 17, 473-486 (1978).
    [59] S. Takahashi, “Space charge effect in lead zirconate titanate ceramics caused by the addition of impurities,” Jpn. J. Appl. Phys., 9, 1236-1246 (1970).
    [60] S. Takahashi, “Electrical resistivity of lead zirconate titanate ceramics containing impurities,” Jpn. J. Appl. Phys., 10, 643-651 (1971).
    [61] K. C. Kao, “Dielectric Phenomena in Solids,” Elsievier Academic Press, San Diego, California, (2004).
    [62] Y. F. Chiu, “Fabrication of Pb(Zr0.52Ti0.48)O3-Pb(Mn1/3Sb2/3)O3-Pb(Zn1/3Nb2/3)O3 ceramics and their applications on the piezoelectric transformers (PT),” Master thesis, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. (2009).
    [63] J. L. Du, J. H. Hu, K. J. Tseng, C. S. Kai, and G. C. Siong, “Modeling and analysis of dual-output piezoelectric transformer operating at thickness-shear vibration mode,” IEEE Trans. Ultrason., Ferroelectr., Freq. Contr., 53, 579-585 (2006).
    [64] L. H. Chiu, “Study of DC-DC converter utilizing annular-type piezoelectric transformer,” Master thesis, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. (2002).
    [65] B. S. Chang, “A Study on Disk Type Piezoelectric Transformers,” Master thesis, Department of Mechanical Engineering, Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, R.O.C. (2007).
    [66] K. Kakimoto, K. Akao, Y. Guo, and H. Ohsato, “Raman scattering study of piezoelectric (Na0.5K0.5)NbO3-LiNbO3 ceramics,” Jpn. J. Appl. Phys., 44, 7064-7067 (2005).
    [67] J. T. Last, “Infrared-absorption studies on barium titanate and related materials,” Phys. Rev., 105, 1740-1750 (1957).
    [68] C. B. Sawyer, and C. H. Tower, “Rochelle as a dielectric,” Phys. Rev., 35, 269-275 (1930).
    [69] M. Kosec, and D. Kolar, ‘‘On activated sintering and electrical properties of NaKNbO3,’’ Mater. Res. Bull., 10, 335–340 (1975).
    [70] M. Demartin Maeder, and D. Damjanovic, ‘‘Lead free ferroelectric materials,’’; pp. 389–412 in Piezoelectric Materials in Devices, Edited by N. Setter. Lausanne, Switzerland, (2002).
    [71] E. Hollenstein, “Preparation and properties of KNbO3 based piezoceramics.” Ph. D Thesis, EPFL Lausanne (2007).
    [72] J. Acker, H. Kungl, and M. J. Hoffmann, “Influence of alkaline and niobium excess on sintering and microstructure of sodium-potassium niobate (K0.5Na0.5)NbO3,” J. Am. Ceram. Soc., 93, 1270-1281 (2010).
    [73] L. Egerton, and D. M. Dillon, “Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate,” J. Am. Ceram. Soc., 42, 438-442 (1959).
    [74] P. Zhao, B. P. Zhang, and J. F. Li, “Enhancing piezoelectric d33 coefficient in Li/Ta-codoped lead-free (Na, K)NbO3 ceramics by compensating Na and K at a fixed ratio,”Appl. Phys. Lett., 91, 172901 (2007).
    [75] Y. Chang, Z. Yang, D. Ma, Z. Liu, and Z. Wang, “Phase coexistence and high electrical properties in (KxNa0.96−xLi0.04)(Nb0.85Ta0.15)O3 piezoelectric ceramics,” J. Appl. Phys., 105, 054101 (2009).
    [76] N. M. Hagh, K. Kerman, B. Jadidian, and A. Safari, “Dielectric and piezoelectric properties of Cu2+-doped alkali niobates,” J. Eur. Ceram. Soc., 29, 2325-2332 (2009).
    [77] H. Y. Park, J. Y. Choi, M. K. Choi, K. H. Cho, S. Nahm, H. G. Lee, and H. W. Kang, “Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics,” J. Am. Ceram. Soc., 91, 2374-2377 (2008).
    [78] D. Lin, K. W. Kwok, and H. L. W. Chan, “Piezoelectric and ferroelectric properties of KxNa1−xNbO3 lead-free ceramics with MnO2 and CuO doping,” J. Alloys Compd., 461, 273-278 (2008).
    [79] Y. D. Hou, M. K. Zhu, F. Gao, H. Wang, B. Wang, H. Yan, and C. S. Tian, “Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics,” J. Am. Ceram. Soc., 87, 847-850 (2004).
    [80] K. Toshio, S. Toshimasa, T. Takaaki, and D. Masaki, “Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O,” Jpn. J. Appl. Phys., 31, 3058-3060 (1992).
    [81] S. M. Lee, S. H. Lee, C. B. Yoon, H. E. Kim, and K. W. Lee, “Low-temperature sintering of MnO2-doped PZT-PZN piezoelectric ceramics,” J. Electroceram., 18, 311-315 (2007).
    [82] M. Matsubara, T. Yamaguchi, K. Kikuta, and S. Hirano, “Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid,” Jpn. J. Appl. Phys., 43, 7159-7163 (2004).
    [83] M. Matsubara, T. Yamaguchi, K. Kikuta, and S. Hirano, “Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid,” Jpn. J. Appl. Phys., 44, 258-263 (2005).
    [84] M. Matsubara, T. Yamaguchi, K. Kikuta, and S. Hirano, “Synthesis and characterization of (K0.5Na0.5)(Nb0.7Ta0.3)O3 piezoelectric ceramics sintered with sintering aid K5.4Cu1.3Ta10O29,” Jpn. J. Appl. Phys., 44, 6618-6623 (2005).
    [85] Q. Chen, L. Chen, Q. Li, X. Yue, D. Xiao, J. Zhu, X. Shi, and Z. Liu, “Piezoelectric properties of K4CuNb8O23 modified (Na0.5K0.5)NbO3 lead-free piezoceramics,” J. Appl. Phys., 102, 104109 (2007).
    [86] H. Y. Park, I. T. Seo, M. K. Choi, S. Nahm, H. G. Lee, H. W. Kang, and B. H. Choi, “Microstructure and piezoelectric properties of the CuO-added (Na0.5K0.5)(Nb0.97Sb0.03)O3 lead-free piezoelectric ceramics,” J. Appl. Phys., 104, 034103 (2008).
    [87] C. W. Ahn, M. Karmarkar, D. Vehland, D. H. Kang, K. S. Bae, and S. Priya, “Low temperature sintering and piezoelectric properties of CuO-doped (K0.5Na0.5)NbO3 ceramics,” Ferroelectric Lett., 35, 66-72 (2008).
    [88] S. Zhang, J. B. Lim, H. J. Lee, and T. R. Shrout, “Characterization of hard piezoelectric lead-free ceramics,” IEEE Trans. Ultrason., Ferroelectr. Freq. Contr., 56, 1523-1527 (2009).
    [89] A. Reisman and F. Holtzberg, “Phase equilibria in the system K2CO3-Nb2O5 by the method of differential thermal analysis,” J. Am. Ceram. Soc., 116, 2115-2119 (1955).
    [90] M. W. Shafer, and R. Roy, “Phase equilibria in the system NaNbO3-Nb2O5,” J. Am. Ceram. Soc., 42, 482-485 (1959).
    [91] L. Liu, H. Fan, L. Fang, X. Chen, H. Dammak, and M. P. Thi, “Effects of Na/K evaporation on electrical properties and intrinsic defects in Na0.5K0.5NbO3 ceramics,” Mater. Chem. Phys., 117, 138-141 (2009).
    [92] K. Kakimoto, K. Akao, Y. Guo, and H. Ohsato, “Raman scattering study of Piezoelectric (Na0.5K0.5)NbO3-LiNbO3 ceramics,” Jpn. J. Appl. Phys., 44, 7064-7067 (2005).
    [93] J. G. Fisher, D. Rout, K. S. Moon, and S. K. L. Kang, “Structural changes in potassium sodium niobate ceramics sintered in different atmospheres,” J. Alloys comp., 479, 467-472 (2009).
    [94] L. J. Hu, Y. H. Chang, M. L. Hu, M. W. Chang, and W. S. Tse, “Effect of doping on the Raman modes in MgO-doped lithium niobate crystals,” J. Raman Spectro., 22, 333-337 (1991).
    [95] J. T. Last, “Infrared-absorption studies on barium titanate and related materials,” Phys. Rev., 105, 1740-1750 (1957).
    [96] H. Y. Park, J. Y. Choi, M. K. Choi, K. H. Cho, S. Nahm, H. G. Lee, and H. W. Kang, “Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics,” J. Am. Ceram. Soc., 91, 2374-2377 (2008).
    [97] R. M. German, “Transient liquids,” p.164 in liquid phase sintering 1st edition, Plenum Press, New York (1985).
    [98] C. C. Tsai, S. Y. Chu, and C. K. Liang, “Low-temperature sintered PMnN-PZT based ceramics using the B-site oxide precursor method for therapeutic transducers,” J. Alloy. Com., 478, 516-22 (2009).
    [99] M. S. Islam, “Ionic transport in ABO3 perovskite oxides: a computer modelling tour,” J. Mater. Chem., 10, 1027-1038 (2000).
    [100] J. B. Lim, S. Zhang, J. H. Jeon, and Thomas R. Shrout, “(K,Na)NbO3-based ceramics for piezoelectric “Hard” lead-Free materials,” J. Am. Ceram. Soc., 93, 1218–1220 (2010).
    [101] D. Lin, K. W. Kwok, and H. L. W. Chan, “Structure, Dielectric, and Piezoelectric Properties of CuO-doped K0.5Na0.5NbO3–BaTiO3 lead-Free ceramics,” J. Appl. Phys., 102, 074113 (2007).
    [102] S. H. Park, C. W. Ahn, S. Nahm, and J. S. Song, “Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics,” Jpn. J. Appl. Phys., 43, 1072-1074 (2004).
    [103] S. Y. Yang, C. C. Tsai, Y. C. Liou, C. H. Hong, B. J. Li, and S. Y. Chu, “Investigation of CuO-Doped NKN ceramics with high mechanical quality factor synthesized by a B-site oxide precursor method,” J. Am. Ceram. Soc., 95, 1011-1017 (2012).
    [104] F. Rubio-Marcos, J. J. Romero, M. G. Navarro-Rojero, and J. F. Fernandez, “Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics,” J. Eur. Ceram. Soc., 29, 3045-3052 (2009).
    [105] P. J. M. Smidt and J. L. Duarte, “Powering neon lamps through piezoelectric transformers,” in IEEE PESC’96 Rec., 310-315 (1996).
    [106] M. Imori, T. Taniguchi, H. Matsumoto, and T. Sakai, “A photomultiplier high voltage power supply incorporating a piezoelectric ceramic transformer,” IEEE Trans. Nucl. Sci., 43, 1427-1431 (1996).
    [107] Y. Fuda, K. Kumasaka, M. Katsuno, H. Sato, and Y. Ino, “Piezoelectric transformer for cold cathode fluorescent lamp inverter,” Jpn. J. Appl. Phys., pt. 1, 36, 3050-3052 (1997).
    [108] T. Zaitsu, Y. Fuda, Y. Okabe, T. Ninomiya, S. Hamamura, and M. Katsuno, “New piezoelectric transformer converter for ac adapter,” in IEEE APEC’97 Rec., 568-572 (1997).
    [109] H. Kakedhashi, T. Hidaka, T. Ninomiya, M. Shoyama, H. Ogasawara, and Y. Ohta, “Electronic ballast using piezoelectric transformers for fluorescent lamps,” in IEEE PESC’98 Rec., 29-35 (1998).
    [110] J. Navas, T. Bove, J. A. Cobos, F. Nuño, and K. Brebol, “Miniaturised battery charger using piezoelectric transformers,” in IEEE APEC’01 Rec., 492-496 (2001).
    [111] D. Vasic, F. Costa, and E. Sarraute, “A new MOSFET&IGBT gate drive insulated by a piezoelectric transformer,” in IEEE PESC’01 Rec., 1479-1484 (2001).
    [112] R. L. Lin, F. C. Lee, E. M. Baker, and D. Y. Chen, “Inductor-less piezoelectric transformer electronic ballast for linear fluorescent lamp,” in IEEE APEC’01 Rec., 664-669 (2001).
    [113] D. Lin, M. S. Guo, K. H. Lam, K .W. Kwok, and H. L. W. Chan, “Lead-free piezoelectric ceramic (K0.5Na0.5)NbO3 with MnO2 and K5.4Cu1.3Ta10O29 doping for piezoelectric transformer application,” Smart Mater. Struct., 17, 035002 (2008).
    [114] J. H. Hu, H. L. Li, H. L. W. Chan, and C. L. Choy, “A ring-shaped piezoelectric transformer operating in the third symmetric extensional vibrational mode” Sens. Actu. A, 88, 79-86 (2001).
    [115] S. Priya, S. Ural, H. W. Kim, K. Uchino, and T. Ezaki, “Multilayered unipoled piezoelectric transformers,” Jpn. J. Appl. Phys., 43, 3503-3510 (2004).

    下載圖示 校內:2016-08-07公開
    校外:2018-08-07公開
    QR CODE