| 研究生: |
王秉成 Wang, Ping-Chung |
|---|---|
| 論文名稱: |
µ(I)-rheology流體在地形座標系統上之應用 An application of µ(I)-rheology flows in terrain-fitted coordinate system |
| 指導教授: |
戴義欽
Tai, Yih-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | rheology 、地形座標系統 、顆粒流 |
| 外文關鍵詞: | rheology, terrain-fitted coordinate system, granular flow |
| 相關次數: | 點閱:63 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於全球氣候異常的因素,導致降雨量的暴增,使得土石流、山崩
等自然災害發生的頻率越來越高,直接的影響到人民的生命財產安全,為了有效的去預測這些自然災害的影響範圍以及危害程度,我們可以藉由研究顆粒體的運動行為,來推估其流動特性。傳統的做法是透過實驗方法來進行探討,不過近年來透過應用數值模擬的方法,來進行顆粒流之研究也漸日益蓬勃發展。
本文的研究重點是著重在控制方程式中的摩擦項,以往在模擬顆粒的崩塌行為時,通常是採用庫倫摩擦力,本研究則是將Pouliquen & Forterre (2002)所提出的μ(I)-rheology 應用在摩擦項及對流項中,去探μ(I)-rheology 在變動地形上對流體行為的影響,包括土體厚度、土體滑移的距離等,且將控制方程式拓展至三維現地地形,並使用地形座標系(Tai and Kuo, 2008、Tai et al., 2012)將控制方程式建立在隨底床變動的座標軸上,以此來描述顆粒流的動態行為。
In recent years, due to abnormal climate factors, result in a surge of rainfall, it may increase the frequency of debris flow or landslides occusrs. It also affect people's lives and properties. In order to effectively predict the range of these natural disasters, we can study particle behavior of movement to estimates its flow characteristics. The traditional approach is through experimental methods, but for the past few years, the application of numerical simulation methods to study the granular flows has developed gradually.
In this paper, we focus on the friction term in the momentum equation.In the past, simulating the collapse behavior of particle usually used Coulomb friction, but we apply μ(I)-rheology to friction term and convection term to explore fluid behavior of the change in terrain, including thickness, run-out distance of granular flows. In addition, governing equation was extended to two-dimensional terrain, by using the terrain-fitted coordinate system to governing equation base on changes in the bed with the coordinate axes. To describe the dynamic behavior of granular flow.
[1] Cundall, P. A. and Strack, O. D. L. (1979). “ A discrete numerical model for granular assembiles.” Geotechnique, 47-65.
[2] Forterre, Y. (2006). “Kapiza waves as a test for three-dimensional granular flow rheology.” J. Fluid Mech., 563, 123-132.
[3] Gray, J. M. N. T. and Edwards. A. N. (2014). “A depth-averaged μ(I)-rheology for shallow granular free-surface flows.” Journal of Fluid Mechanics, 755,
503-534.
[4] Gray, J. M. N. T., Wieland, M. and Hutter, K. (1999). “Gravity-driven free surface flow of granular avalanches over complex basal topography.” Proc. R. Soc.Lond. A 1999 455, 1841-1874.
[5] GDR MiDi. (2004). “On dense granular flow.” European Physical Journal E, 14, 341-365.
[6] Hui, W. H. (2004). “A unified coordinates approach to computational fluid dynamics.” J. Comput. Appl. Math., 163, 15-28.
[7] Hui, W. H. (2007). “The unified coordinate system in computational fluid dynamics.” Commun. Comput. Phys., 2(4), 577-610.
[8] Hui, W. H., Li, P. Y. and Li, Z. W. (1999). “A unified coordinate system for solving the two-dimensional Euler equations.” Journal of Computational Physics, 153, 596-637.
[9] Hutter, K., Siegel, M., Savage, S. B. and Nohguchi, Y. (1993). “Two-dimensional spreading of a granular avalanche down an inclined plane. Part I. Theory.” Acta Mech., 100, 37-68.
[10] Jop, P., Forterre, Y. and Pouliquen, O. (2005). “Crucial role of sidewalls in granular surface flows: consequences for the rheology.” Journal of Fluid
Mechanics, 541, 167-192.
[11] Jop, P., Forterre, Y. and Pouliquen, O. (2006). “A constitutive law for dense granular flows.” Nature, 441, 727-730.
[12] Lajeunesse, E., Monnier, J. B. and Homsy, M. (2005). “Granular slumping on a horizontal surface.” Physics of Fluids, 17, 10330121-15.
[13] Lube, G. and Huppert, H. E. (2005). “Collapses of two-dimensional granular columns.” Physical Review E, 72, 041301-1-10
[14] Pouliquen, O. (1999a). “Scaling laws in granular flows down rough inclined planes.” Phys. Fluids, 11 (3), 542-548
[15] Pouliquen, O. and Forterre, Y. (2002). “Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane.” J. Fluid Mech., 453, 133-151.
[16] Savage, S. B. and Hutter, K. (1989). “The motion of a finite mass of granular material down a rough incline.” J. Fluid Mech., 199, 177-215.
[17] Savage, S. B. and Hutter, K. (1991). “The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis.” Acta. Mech., 86, 201-223.
[18] Tai. Y. C. and Lin, Y. C. (2008). “A focused view of the behavior of granular flows down a confined inclined chute into the horizontal run-out zone.” Phys. Fluids, 20, 123302.
[19] Tai. Y. C. and Kuo, C. Y. (2008). “A New Model of Granular Flows over General Topography with Erosion and Deposition.” Acta Mechanica, 199, 71-96.
[20] Tai, Y. C. and Kuo, C. Y. and Hui, W. H. (2012). “An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature.”Geophysical and Astrophysical Fluid Dynamics, 106:6, 596-629.
[21] Tai. Y. C. Wang, Y., Gray, J. M. N. T. and Hutter, K. (1999). “Methods of similitudes in granular avalanche flows.”In Advances in Cold-Region Thermal Engineering and Sciences Lecture notes in physics, 533, 415-428.
[22] Yee, H.C. (1987). “Construction of explicit and implicit symmetric TVD schemes and their applications.” J. Comput. Phys., 68, 151.
[23] 詹錢登(2000),「土石流概論」,台北市:科技圖書股份有限公司。
[24] 賈魯強、黎壁賢 (2001). “漫談顆粒物理.” 物理雙月刊,23(4).
[25] 蕭沛佳、顧承孙、謝帄城 (2005). “不連續變形分析法於礫石型土石流之應用.” 水土保持學報, 39(1), 29-47.