簡易檢索 / 詳目顯示

研究生: 鮑俊宏
Pao, Chun-Hung
論文名稱: 碎波帶底部邊界層流場之實驗研究
Experimental study of the boundary layer flow in surf zone
指導教授: 黃煌輝
Hwung, Hwung-Hweng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 108
中文關鍵詞: 碎波帶質點影像測速儀邊界層
外文關鍵詞: surf zone, PIV, wave bottom boundary layer
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 邊界層流 (boundary layer flow) 一直以來被視為兩相流的學理基礎,在淺水區域也是扮演底質懸浮、傳輸的重要力學機制,尤其是位於碎波帶的底部邊界層流,除了因本身流況不穩定而產生的局部較小紊流,尚有因碎波而產生於波峰區域的強烈外部紊流,隨著水舌衝擊水體的過程而往底部區域傳遞。此帶有大量能量的外部紊流,以渦流的形式向下傳遞並於底部邊界層區域產生動量交換,也可能導致更多底質的懸浮,因此,外部強烈紊流與局部較小紊流之間的關聯性,是需要進一步去探討的。然而,像是碎波產生的渦流,因缺乏適合量測的儀器,以至於較少有著重於此方面的研究,也因此,使得近十年來蓬勃發展的新量測技術,質點影像測速儀 (PIV,Particle Image Velocimetry),非常適用於此關聯性的探討,同時也是個新課題。本文旨在使用PIV量測邊界層流,分析於兩種碎波條件、兩個不同測點情況下的邊界層流場。

    本實驗於成功大學水工試驗所的造波水槽 (25m*0.3m*0.7m) 所進行,內置坡度1/20的透明斜坡,為避免表面水體因碎波捲入的氣泡將光源散射,雷射光頁由水槽玻璃側壁入射,經45度的鏡子反射,於底部流場區域提供照明。藉裝置一高放大率的鏡頭,相機的空間解析度提昇為6.7958 µm/pixel,若邊界層厚度為1mm,一垂直速度剖面可解析出約有9個向量分佈。本實驗另建立一可精確控制的資料擷取系統 (DAQ system,Data acquisition system),得以用來決定欲量測的波浪相位,而此一量測系統所發展的起始點平移方法 (Shift method),也成功地增加PIV量測的波浪相位兩倍,於溢波 (spilling breaker) 碎波的情況下,一個週期約有20個相位可解析,而捲波 (plunging breaker) 約有28個。實驗結果顯示在捲波衝擊點 (plunging point) 的位置無論是何種碎波型態,底部邊界層流場保持類似層流的行為,而渦流延展 (vortex-stretching) 明顯的區域,溢波碎波情況下仍維持類似前一測點的運動現象,捲波碎波條件下則發現於波峰後的2/14相位,有一較大渦流 (a large-scale eddy) 侵入邊界層流場,隨著相位速度傳遞並且逐漸消散。

    The boundary layer flow has been considered an essential knowledge for two phase flow and plays an important role on sediment transport especially in the shallow water region. It has been observed that turbulences generated in the crest region will be propagated downward to the interior region during the breaking process in the surf zone. The descending turbulence may bring intense energy and lead momentum to exchange in the boundary layer region. The relationship between the characteristics of boundary layer flow and the externally driven fluid motions needs to be considered further. Coherent fluid motions, such as large eddies produced by wave breaking, were plausible mechanisms but have received little attention because of a lack of suitable measurements. Accordingly, this fact made PIV (Particle Image Velocimetry) measurement technique so enchanting because of the instantaneously full-field vectors and non-intrusive flow-field measurements. The objective of this paper was to investigate the near-bed flow using PIV. The measurements were conducted in two different positions under two types of breaker.

    The experiment were carried out on a 1/20 slope in a glass-side walled wave flume in Tainan Hydraulics Laboratory. The laser light sheet was delivered beneath the transparent slope to avoid uncontrollable scattering of light sheet from the effect of free-surface. The resolution of CCD camera is 6.7958 µm/pixel which allows nine vectors being distributed vertically since the thickness of boundary layer flow is about 1 mm. A well-controlled DAQ (Data acquisition) system succeeded in doubling the measuring phases which resolved 20 phases during one period for spilling breaker and 28 phases for plunging breaker. The results show that boundary layer flow remained laminar-like behaviors in the plunging point regardless of types of breaker. Similar motions also revealed in the vortex-stretching region under spilling breaker, whereas a large-scale eddy struck the boundary layer flow and changed the original characteristics under plunging breaker.

    Abstract (English) i Abstract (Chinese) ii Acknowledgment iii Contents iv List of Figures vii List of Tables xi Chapter 1 Introduction 1.1 Background 1 1.2 Literature review 4 1.2.1 WBBL in oscillatory flow 5 1.2.2 WBBL in field observations 7 1.2.3 Surf zone dynamics 10 1.3 Outline 20 Chapter 1 Introduction 20 Chapter 2 Experiments 20 Chapter 3 Experimental procedure 20 Chapter 4 Results 21 Chapter 5 Conclusions 21 Chapter 2 Experiments 2.1 Facilities 22 2.1.1 Wave flume 22 2.1.2 Slope 22 2.1.3 Wave gauges 23 2.1.4 3-D traversing table 24 2.1.5 PIV measuring system 24 2.2 DAQ system 28 2.3 Measuring techniques 29 2.3.1 Path of light sheet 29 2.3.2 High-magnification camera lens 30 2.3.3 Seeding concentration 31 2.3.4 Bottom boundary effects 32 2.4 Experimental set-up 33 2.4.1 Distribution of wave gauges 33 2.4.2 Measuring resolution 34 2.4.3 Measuring positions 34 2.4.4 Experimental conditions 38 Chapter 3 Experimental procedure 3.1 DAQ procedure 40 3.2 Shift method 41 3.3 Calibration of external trigger signal 43 3.4 Principle and process of PIV 46 3.4.1 Image quality 47 3.4.2 Theorem of evaluation 51 3.4.3 Setting for evaluation 53 3.4.4 Post processing 57 Chapter 4 Results 4.1 Estimation of Reynolds number 59 4.2 Vectors field in P1 60 4.3 Vectors field in P2 62 4.4 Non-dimensional profile 65 Chapter 5 Conclusions 5.1 Conclusions 102 5.2 Suggestions 103 References 104 Vita 108

    1. Adrian, R.J., 1991, Particle-imaging techniques for experiment fluid mechanics. Annu. Rev. Fluid Mech. 23, 261-304.
    2. Ahmed S. M. A., Sato, S., 2001, Investigation of bottom boundary layer dynamics of movable bed by using enhanced PIV technique. Coastal Engineering Journal 43 (4), 239-258.
    3. Battjes J.A., 1988, Surf-zone dynamics. Annu. Rev. Fluid Mech. 20, 257-293.
    4. Battjes, J.A., 1974, Surf similarity. Proceedings 14th International Conference Coastal Eng. (Copenhangen) pp.447-465.
    5. Chang, K.-A., 1999, Experimental study of wave breaking and wave-structure interaction. PhD Thesis, Cornell University, 182 pp.
    6. Chang, K.-A., Liu, P.L.-F., 1999, Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Phys. Fluids 11 (11), 3390–3400.
    7. Christensen, E.D., Walstra, D.J., Emerat, N., 2002, Vertical variation of the flow across the surf zone. Coastal Eng. 45, 169-198.
    8. Cowen, E.A., Sou, I.M., Liu, L.-F., Raubenheimei, B., 2003, Particle image velocimetry measurements within a laboratory-generated swash zone. J. Engrg. Mech. 129 (10), 1119-1129.
    9. Cox, D.T., Kobayashi, N., Okayasu, A., 1996, Bottom shear stress in the surf zone. J. Geophys. Res. 101 (C6), 14,337-14,348.
    10. Cox, D.T., Kobayashi, N., 2000, Identification of intense, intermittent coherent motions under shoaling and breaking waves. J. Geophys. Res. 105 (C6), 14,223-14,236.
    11. Cox, D.T., Anderson, S.L., 2001, Statistics of intermittent surf zone turbulence and observations of large eddies using PIV. Coastal Engineering Journal 43 (2), 121-131.
    12. Elfrink, B., Baldock, T., 2002. Hydrodynamics and sediment transport in the swash zone: a review and perspectives. Coastal Engineering 45, 149-167.
    13. Foster, D.L., Beach, R.A., Holman, R.A., 2000, Field observations of the wave bottom boundary layer. J. Geophys. Res. 105 (C8), 19,631-19,647.
    14. Foster, D.L., Beach, R.A., Holman, R.A., 2006, Turbulence observations of the nearshore wave bottom boundary layer. J. Geophys. Res. 111, C04011.
    15. Fredsøe, J., Deigaard, R., 1992, Mechanics of Coastal Sediment Transport. Advanced Series on Ocean Engineering, vol. 3. World Scientific, Singapore.
    16. Fredsøe, J., Sumer, B.M., Kozakiewicz, A., Chua, L.H.C., Deigaard, R., 2003, Effect of externally generated turbulence on wave boundary layer. Coastal Engineering 49, 155-183.
    17. Grant, W.D., Madsen, O.S., 1986, The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech. 18, 265-305.
    18. Hino, M., Kashiwayanagi, M., Hara, T., 1983, Experiments on the turbulent statistics and structure of reciprocating oscillatory flows. J. Fluid Mech. 131, 636-400.
    19. Hsu, W.Y., Surf-zone velocity field in a spilling breaker. Master Thesis, National Cheng Kung University, 75 pp. (in Chinese)
    20. Hwung, Z.C., Hwung, H.H., Hsu, W.Y., 2007, The surface images of flow structures in a gentle spilling breaker. (Invited paper) The 9th Asian Symposium on Visualization, Hong Kong.
    21. Jensen, B.L., Sumer, B.M., Fredsøe, J., 1989, Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265–297.
    22. Jonsson, I.G., Carlsen, N.A., 1976, Experimental and theoretical investigations in an oscillatory turbulence boundary layer. J. Hydraul. Res. 14, 45–60.
    23. Lara, J.L., Cowen, E.A., Sou, I.M., 2002, A depth-of-field limited particle image velocimetry technique applied to oscillatory boundary layer flow over a porous bed. Exp. Fluids 33, 47-53.
    24. Lin, C., Hwung, H.H., 1989, The experimental study on the boundary layer flow of waves propagating on a sloping bottom. The Chinese Journal of Mechanics. 5 (1), 67-76 (in Chinese).
    25. Lin, C., 1989, The characteristics of internal flow field and bottom boundary layer of waves propagating on sloping bottoms. PhD Thesis, National Cheng Kung University, 172 pp. (in Chinese)
    26. Lin, C., Hwung, H.H., 1992, External and internal flow fields of plunging breaker. Exp. Fluids 12, 229-237.
    27. Lin, C., Hwung, H.H., 2002, Observation and measurement of the bottom boundary layer flow in the prebreaking zone of shoaling waves. Ocean Engrg. 29, 1479-1502.
    28. Longo, S., Petti, M., Losada, I.J., 2002, Turbulence in the swash and surf zones: a review. Coastal Eng. 45, 129-147.
    29. Melville, W.K., Veron, F., White, C.J., 2002, The velocity field under breaking waves: coherent structures and turbulence. J. Fluid Mech. 454, 203-233.
    30. Nadaoka, K., Kondoh, T., 1982, Laboratory measurements of velocity field structure in the surf zone by LDV. Coastal Eng. In Japan 25, 125-145.
    31. Nadaoka, K., Hino, M., Kondoh, T., 1989, Structure of the turbulent flow field under breaking waves in the surf zone. J. Fluid Mech. 204, 359-387.
    32. Nielson, P., 1992, Coastal Bottom Boundary Layers and Sediment Transport. Advanced Series on Ocean Engineering, vol. 4. World Scientific, Singapore.
    33. Raffel, M., Willert, C., Kompenhans, J., 1998, Particle Image Velocimetry: A Practical Guide, 3rd printing, Springer.
    34. Robinson, S.K., 1991, Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601-39.
    35. Sleath, J., 1987, Turbulent oscillatory flow over rough beds. J. Fluid Mech. 182, 369-410.
    36. Smith, N.W.A.M., Atsavapranee, P., Katz, J., Osborn, T.R., 2002, PIV measurements in the bottom boundary layer of the coastal ocean. Exp. Fluids 33, 962-971.
    37. Smith, N.W.A.M., Katz, J., 2005, On the structure of turbulence in the bottom boundary layer of the coastal ocean. J. Phys. Oceanogr. 35, 72-93.
    38. Smyth, C., Hay, A.E., 2003, Near-bed turbulence and bottom friction during Sandy-Duck97. J. Geophys. Res. 108 (C6), 3197.
    39. Stansby, P.K., Feng, T., 2005, Kinematics and depth-intergrated terms in surf zone waves from laboratory measurement. J. Fluid Mech. 529, 279-529,310.
    40. Svendsen, I.A., 1987, Analysis of surf zone turbulence. J. Geophys. Res. 92 (C5) 5115-5124.
    41. Ting, F.C.K., Kirby, J.T., 1994, Observation of undertow and turbulence in a laboratory surf zone. Coastal Eng. 24, 51-80.
    42. Ting, F.C.K., Kirby, J.T., 1995, Dynamics of surf-zone turbulence in a strong plunging breaker. Coastal Eng. 24, 177-204.
    43. Ting, F.C.K., Kirby, J.T., 1996, Dynamics of surf-zone turbulence in a spilling breaker. Coastal Eng. 27, 131-160.
    44. Trowbridge, J.H., Agrawal, Y.C., 1995, Glimpses of a wave boundary layer. J. Geophys. Res. 100 (C10), 20,729-20,743.
    45. TSI®, PIV Hardware Operation Manual, 1997.
    46. TSI®, PIV Software Insight 5 Instruction Manual, 2003.
    47. Zou, Q.P., Hay, A.E., 2003, The vertical structure of the wave bottom boundary layer over a sloping bed: Theory and field measurements. J. Phys. Oceanogr. 33, 1380-1400.

    下載圖示 校內:2010-08-14公開
    校外:2012-08-14公開
    QR CODE