簡易檢索 / 詳目顯示

研究生: 孫于閔
Sun, Yu-Min
論文名稱: 具主動式垂直磁浮型感應耦合結構之非接觸式旋轉供電系統
Contactless Rotating Power Transfer System with Active Vertical Maglev Inductively Coupled Structure
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 非接觸式感應耦合結構旋轉驅動系統主動式磁浮系統
外文關鍵詞: Contactless inductively coupled structure, Rotary driven system, Active vertical maglev system
相關次數: 點閱:124下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在針對醫療上所使用之高速旋轉離心機於操作下並同時提供旋轉部電能之需求,研製兼具非接觸式供電系統以及無刷馬達旋轉驅動架構,並於結構中建置一平台以置放待測物,同時為了提高轉速且降低運轉磨耗,加入主動式磁浮系統之研究。饋電結構分別提出不同線圈及導磁材料配置且透過模擬軟體進行分析,設計出單夾層式搭配導磁材料所構成之外殼,有效增強電磁感應能力。且為了驗證能在旋轉運動過程中能持續進行電能傳輸,本文自製六極無刷馬達旋轉驅動結構,採用三維列印技術設計並製作整合支架。經由實驗測試,本文所提主動式垂直磁浮型非接觸式旋轉供電系統之最大傳輸功率可達614 W,且此時傳輸效率為86.2%;而於整體系統於450 W時,電能轉換效率則達90%。

    In this thesis, an improved type of active vertical maglev inductively coupled structure of the contactless rotating power transfer system for high-speed rotating application in medical has been developed. The high-speed rotating equipment is aimed at the application of new techniques which will solve the issue of power supply issue and reduce the wear and tear caused by constant usage. To construct a platform to place the DUT for contactless rotating power transfer in this thesis. The magnetic field finite-element-method (FEM) simulation software is used to analyze the different structures of coils. The single sandwich windings with shell composed of magnetic materials are designed to improve the coupling capability. Moreover, in order to verify the power transmission in process of rotation, six brushless doubly fed rotationally driven architecture made up of three-dimensional printing technology have been integrated. Finally, the experimental results show that the rotary machinery is able to be powered and worked by proposed system. The maximum output power received in load is 614 W with transmission efficiency of 86.2%. In addition, the transfer efficiency has reached about 90% with 450 W output power.

    目錄 頁數 中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 研究目的與背景 1 1-2 非接觸式電能傳輸技術針對旋轉機具之應用 5 1-3 磁浮方式分類 8 1-4 研究方法 10 1-5 論文大綱 11 1-6 本論文貢獻 12 第二章 非接觸感應傳能原理與特性分析 13 2-1 前言 13 2-2 電磁感應傳能基本原理 13 2-3 感應耦合結構線圈非理想特性分析 16 2-3-1 導線集膚效應 17 2-3-2 導線近接效應 19 2-3-3 導磁材料特性 20 2-4 常見旋轉式感應耦合結構線圈配置 21 2-4-1 鄰近型與同軸型線圈配置分析 21 2-4-2 旋轉式感應耦合結構鐵芯配置分析 23 2-5 非接觸傳能原理分析 25 2-5-1 鬆耦合變壓器模型 26 2-5-2 結構之互感與耦合係數量測 28 第三章 主動式磁浮旋轉供電結構分析 30 3-1 前言 30 3-2 主動式磁浮系統原理分析與設計 30 3-2-1 主動式垂直吸引磁浮數學模型分析 30 3-3 感應耦合結構設計與分析 36 3-3-1 感應耦合結構配置分析與比較 36 3-3-2 改良型感應耦合結構分析 38 3-3-3 非接觸式旋轉供電耦合結構磁路分析 40 3-4 非接觸式電能傳輸結構諧振電路分析 46 3-4-1 基本諧振架構分析 46 3-4-2 諧振電路之非理想特性分析 49 3-5 單夾層式感應耦合結構製作與量測 51 3-5-1 採用之3D列印技術說明 51 3-5-2 單夾層式感應耦合結構設計與製作 52 3-5-3 感應耦合結構諧振架構分析 55 3-5-4 旋轉驅動整體結構設計製作 57 第四章 非接觸旋轉供電系統設計與研製 60 4-1 前言 60 4-2 整體系統驅動架構 60 4-3 旋轉供電系統架構設計 61 4-3-1 初級側電能供給端電路設計 61 4-3-2 次級側電能拾取端電路設計 64 4-4 旋轉驅動系統電路設計 65 4-4-1 旋轉部位置感測電路設計 65 4-4-2 固定部電樞換相驅動電路設計 67 4-4-3 旋轉驅動換相策略 68 4-5 微處理機原理與旋轉驅動控制核心 74 4-5-1 計時器/計數器模組 75 4-5-2 高速類比數位訊號轉換模組 76 4-5-3 數位輸出輸入功能 76 4-5-4 整體系統程式流程 77 4-6 主動式磁浮非接觸式旋轉供電系統整合與設計流程 79 第五章 模擬與實驗結果 83 5-1 前言 83 5-2 非接觸式感應供電架構Simplis電路模擬 83 5-3 實測感應耦合結構電能傳輸 85 5-3-1 轉子部於靜止狀態電能傳輸特性量測 87 5-3-2 量測最大功率輸出與負載變動電能傳輸特性 88 5-4 非接觸式感應耦合結構整合自製旋轉驅動架構實測 90 第六章 結論與未來研究方向 94 6-1 結論 94 6-2 未來研究方向 95 參考文獻 96

    參考文獻
    [1]K. Herzog, E. Schulte, M. A. Atmanand, and W. Schwarz, “Slip control system for a deep-sea mining machine,” IEEE Trans. Autom. Sci. Eng., vol. 4, no. 2, pp. 282-286, Apr. 2007.
    [2]B. W. Tietjen, “The rolling radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 20, no. 9, pp. 18-24, Sept. 2005.
    [3]C. Zhou, H. Yang, and L. Yang, “Real time monitoring of input force for high speed power chucks used in CNC lathes,” in Proc. IEEE ASME, 2010, pp. 387-391.
    [4]Y. C. Wang, Y. F. Chen, and Y. C. Tseng, “Using rotatable and directional (R&D) sensors to achieve temporal coverage of objects and its surveillance application,” IEEE Trans. Mobile Comput., vol. 11, no. 8, pp. 1358-1371, Aug. 2012.
    [5]B. C. Han et al., “Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application,” IEEE Trans. Magn., vol. 48, no. 6, pp. 1959-1966, June 2012.
    [6]“高速離心機”尚上儀器股份有限公司 [Online]. Available:http://www.bioway.com.tw/product-page.php?id=33.
    [7]D. Rozario, N. A. Azeez, and S. S. Williamson, “Analysis and design of coupling capacitors for contactless capacitive power transfer system,” in Proc. IEEE ITEC, 2016, pp. 1-7.
    [8]I. G. Sirbu, L. Mandache, and A. C. Smaranda, “Analysis of misalignment in a capacitively coupled contactless power transfer system,” in Proc. IEEE ISFEE, 2014, pp. 1-6.
    [9]沈紘宇,非接觸式電能傳輸之新型感應耦合結構設計,國立成功大學電機工程學系博士論文,2014年。
    [10]陳信銘,旋轉式感應耦合結構於可旋型非接觸式電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2014年。
    [11]黃立宇,具新型旋轉式感應耦合結構之非接觸式磁浮旋轉供電系統研製,國立成功大學電機工程學系碩士論文,2015年。
    [12]陳重羽,具垂直磁浮型旋轉式感應耦合結構之非接觸式旋轉供電系統,國立成功大學電機工程學系碩士論文,2016年。
    [13]J. Y. Lee, L. Y. Huang, and C. Y. Chen, “Design and implementation of contactless maglev rotating power transfer system with new rotary inductive coupled structure,” in Proc. IEEE IPEMC-ECCE Asia, 2016, pp. 2442-2449.
    [14]H. Z. Beh, G. A. Covic, and J. T. Boys, “Wireless fleet charging system for electric bicycles,” IEEE Trans. Power Electron., vol. 3, no. 1, pp. 75-86, Jan. 2015.
    [15]G. Schweitzer and E. H. Maslen, Magnetic Bearings: Theory, Design, and Application to Rotating Machinery, 2009: Springer-Verlag.
    [16]S. Earnshaw, “On the nature of molecular forces which regulate the constitution of the luminiferous ether,” Trans. Cambridge Philisophical Society, vol. 7, part 1, pp. 97-112, 1842.
    [17]N. Motee, M. S. de Queiroz, Y. Fang and D. M. Dawson, “Active Magnetic Bearing Control with Zero Steady-State Power Loss,” in Proc. IEEE ACC, 2002, pp. 827-832.
    [18]De Queiroz, M. S. Dawson and D. M. Canbolat, “A backstepping-type controller for a 6-DOF active magnetic bearing system,” in Proc. IEEE CDC, 1996, pp. 3370-3375.
    [19]P. Tsiotras and M. Arcak, “Low-bias control of AMB subject to voltage saturation: state-feedback and observer designs,” IEEE Trans. Contr. Syst., vol. 13, no. 2, pp. 263-273, Mar. 2005.
    [20]D. L. Trumper, S. M. Olson, and P. K. Subrahmanyan, “Linearizing control of magnetic suspension systems,” IEEE Trans. Contr. Syst., vol. 5, no. 4, pp. 427-438, July 1997.
    [21]W. G. Hurley and W. H. Wolfle, “Electromagnetic design of a magnetic suspension system,” IEEE Trans. Contr. Syst., vol. 40, no. 2, pp. 124-130, May 1997.
    [22]M. Ono, S. Koga, and H. Ohtsuki, “Japan’s superconducting maglev train,” IEEE Instrum. Meas. Mag., vol. 5, no. 1, pp. 9-15, 2002.
    [23]K. Glatzel, G. Khurdok, and D. Rogg, “The development of the magnetically suspended transportation system in the federal republic of Germany,” IEEE Trans. on Veh. Technol., vol. 29, no. 1, pp. 3-16, 1989.
    [24]張學孔、趙紹廉,“德國磁浮高速運輸系統之研發歷程與展望”,中國土木水利工程學會會刊, vol. 27, no. 1, pp. 83-103, 2000.
    [25]S. A. Vip, J. N. Weber, A. Rehfeldt, and B. Ponick, “Rotary Transformer with Ferrite Core for Brushless Excitation of Synchronous Machines,” in Proc. IEEE ICEM, 2016, pp. 890-896.
    [26]R. Trevisan and A. Costanzo, “A 1-kw Contactless Energy Transfer System Based on a Rotary Transformer for Sealing Rollers,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6337-6345, Mar. 2014.
    [27]J. Hirai, T. W. Kim, and A. Kawamura, “Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 13-20, Jan. 2000.
    [28]J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information and information for cableless linear motor drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 21-27, Jan. 2000.
    [29]A. Abdolkhani, A. P. Hu, and N. K. C. Nair, “A double stator through-hole type contactless slipring for rotary wireless power transfer applications,” IEEE Trans. Energy Convers., vol. 29, no. 2, pp. 426-434, Jan. 2014.
    [30]A. Abdolkhani and A. P. Hu, “Improved coupling design of contactless slipring for rotary applications,” IEEE Trans. Ind. Appl., vol. 3, no. 1, pp. 288-295, Mar. 2015.
    [31]A. Abdolkhani, A. P. Hu, G. A. Covic, and M. Moridnejad, “Contactless slipring system based on rotating magnetic field principle for rotary applications,” in Proc. IEEE ECCE, 2013, pp. 2566-2573.
    [32]A. Abdolkhani and A. P. Hu, “A contactless slipring system by means of axially travelling magnetic field,” in Proc. IEEE ECCE, 2012, pp. 1796-1803.
    [33]A. Abdolkhani and A. P. Hu, “Through-hole contactless slipring system based on rotating magnetic field for rotary applications,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3644-3655, Dec. 2014.
    [34]A. Abdolkhani and A. P. Hu, “A contactless slipring system based on axially travelling magnetic field,” IEEE Trans. Ind. Appl., vol. 3, no. 1, pp. 280-287, Mar. 2015.
    [35]R. Trevisan and A. Costanzo, “A 1-kW contactless energy transfer system based on a rotary transformer for sealing rollers,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6337-6345, Nov. 2014.
    [36]B. A. Potter and S. A. Shirsavar, “Design, implementation and characterization of a contactless power transfer system for rotating applications,” in Proc. IEEE IECON, 2006, pp. 2168-2173.
    [37]J. P. C. Smeets, L. Encica, and E. A. Lomonova, “Comparison of winding topologies in a pot core rotating transformer,” in Proc. IEEE OPTIM, 2010, pp. 103-110.
    [38]J. P. C. Smeets, D. C. J. Krop, J. W. Jansen, M. A. M. Hendrix, and E. A. Lomonova, “Optimal design of a pot core rotating transformer,” in Proc. IEEE ECCE, 2010, pp. 4390-4397.
    [39]J. Veitengruber, F. Rinderknecht, and H. E. Friedrich, “Preliminary investigations of an inductive power transfer system for the rotor power supply of an electric traction drive,” in Proc. IEEE EVER, 2014, pp. 1-8.
    [40]D. Hirschmann, C. P. Dick, S. Richter, and R. W. D. Doncker, “Design of a contactless rotary energy transmission for an industrial application,” in Proc. IEEE PESC, 2008, pp. 4314-4319.
    [41]Z. Long, X. Lin, W. Yuan, and J. Zhang, “Modeling on a non-contact power transmission system in ultrasonic machining,” in Proc. IEEE ROBIO, 2013, pp. 1042-1047.
    [42]D. Bortis, L. Fassler, A. Looser, and J. W. Kolar, “Analysis of rotary transformer concepts for high-speed applications,” in Proc. IEEE APEC, 2013, pp. 3262-3269.
    [43]D. Bortis, I. Kovacevic, L. Fassler, and J. W. Kolar, “Optimization of rotary transformer for high-speed applications,” in Proc. IEEE COMPEL, 2013, pp. 1-6.
    [44]L. J. Veillette, “Highlights of a brushless direct-drive solar array control system design,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-7, no. 2, pp. 324-328, 1971.
    [45]T. A. Stuart, R. J. King, and H. A. Shamseddin, “Rotary transformer design with fixed magnetizing and/or leakage inductances,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-22, no. 5, pp. 565-572, 1986.
    [46]M. Carpita, M. D. Vivo, S. Gavin, and D. Bommottet, “A rotating contactless power transfer system for space applications,” in Proc. IEEE SPEEDAM, 2014, pp. 238-242.
    [47]G. Gao and W. Chen, “Design challenges of wind turbine generators,” in Proc. EIC, 2009, pp. 146-152.
    [48]“環形刮刀” Wabtec, Germany. [Online]. Available: https://www.wabtec.com/, 2016.
    [49]“環型非接觸傳能機具” PowerbyProxi, New Zealand. [Online]. Available: http://powerbyproxi.com/innovations/industrial/proxi-ring/, 2016.
    [50] “EMS and EDS magnetic levitation systems” [Online]. Available: https://www.researchgate.net, 2016.
    [51]C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
    [52]X. Liu, W. M. Ng, C. K. Lee, and S. Y. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. IEEE APEC’08, 2008, pp. 645-650.
    [53]“安全資料表” 3D Systems Co., U. S. A. [Online]. Available:http://cubify.s3.amazonaws.com/Printers/Safety%20data%20sheets/cube_cubex_sds_abs_chinese_traditional.pdf, 2011.
    [54]UCC3895 Data Sheet, Texas Instruments Inc., 2013.
    [55]IR2110 Data Sheet, International Rectifier Inc., 2005.
    [56]IXFH50N50P3 Data Sheet, IXYS Inc., 2015.
    [57]BR1010 Data Sheet, Rectron Inc., 2014.
    [58]Hall-Effect Switch (3144) Data Sheet, Allegro Inc., 2016.
    [59]TC4093BP Data Sheet, Toshiba Inc., 2001.
    [60]PIC30F4011 Data Sheet, Microchip Technology Inc., 2004.

    下載圖示 校內:立即公開
    校外:2020-08-01公開
    QR CODE