簡易檢索 / 詳目顯示

研究生: 楊卓能
Yang, Cho-Neng
論文名稱: 藉由摻雜金奈米粒子與雷射熱退火處理改善有機異質接面太陽能電池效率之研究
Study of Au nanoparticles doped organic bulk heterojunction solar cell with laser and thermal annealing
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 100
中文關鍵詞: 聚-3已基塞吩金奈米粒子雷射退火有機異質接面太陽能電池
外文關鍵詞: P3HT, Au nanoparticle, Laser, Annealing, Organic bulk heterojunction solar cell
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用摻雜金奈米粒子與雷射退火處理兩種方式改善有機高分子太陽能電池元件特性。在電洞傳輸層中摻雜金奈米粒子後使元件短路電流與填充因子有明顯的提升,因為金奈米粒子的局部表面電漿共振使局部電場提升的現象,不只增強元件主動層光吸收效率使激子的產生率提升,同時激子也能有效的分離成電子和電洞。雷射退火則是使用在P3HT吸收光譜範圍的532奈米綠光雷射,針對雷射的光處理效應,因此實驗中所使用的瓦數只有50 mW。主動層經過雷射退火後,高分子P3HT鏈的共軛長度增加,分子的結晶性也有所提升,因而改善P3HT的π電子傳輸特性。結合以上兩個方法與傳統熱退火處理可以大幅度改善元件特性,本論文中最佳元件製備條件為電洞傳輸層中摻雜金奈米粒子之體積比為1:2,並對主動層同時進行雷射(50 mW)與熱退火(130 oC)處理五分鐘。與其他團隊的熱退火處理相比可減少一半的製程時間。其最佳的元件特性之開路電壓為0.61 V、短路電流為11.566 mA/cm2、 理想因子為0.636、功率轉換效率可達4.487 %。

    In this thesis, we fabricated the organic polymer solar cells with doping Au nanoparticles (NPs) and laser annealing to enhance power conversion efficiency. We doped Au NPs into hole transport layer, and found that the short-circuit current density and fill factor of device improved obviously. The local enhancement of the electromagnetic field originated from the excitation of the localized surface plasmon resonance (LSPR) and increased the absorption efficiency of active layer. The LSPR effect not only increased the rate of exciton generation but also improved the probability of exciton dissociation. We also used 532 nm green light laser as the laser annealing source because the maximum intensity of P3HT absorption spectrum is located at the green light region. To focus on the light annealing effect, the laser power we used only about 50mW. After laser annealing, we found that the conjugation length of P3HT is increased and structure became more crystallized. Hence, the property of the π electron transport is enhanced. Combining these two methods with conventional thermal annealing process can improve device characteristic significantly。The best device in our experiment is with parameter of doping Au NPs into PEDOT:PSS with volume ratio of PEDOT:PSS and Au NPs in 1:2 and treat with laser and thermal annealing simultaneously for 5 minute. Laser annealing can reduce half processing time which compare with thermal annealing. The optimum device has the open-circuit voltage (Voc) of 0.61 V, short-circuit current density (Jsc) of 11.566 mA/cm2, fill factor (FF) of 0.636, and power conversion efficiency (PCE) of 4.487 %, respectively.

    摘 要 I ABSTRACT III CONTENT VI TABLE CAPTIONS IX FIGURE CAPTIONS XI CHAPTER 1 INTRODUCTION 1 1-1 BACKGROUND 1 1-1-1 Development of Organic Solar Cell 2 1-1-2 History of Laser 4 1-1-3 Surface Plasmon 5 1-2 MOTIVATION 7 1-3 ORGANIZATION 8 CHAPTER 2 OPERATION PRINCIPLE 10 2-1 SOLAR SPECTRUM 10 2-2 COMPARISON OF INORGANIC AND ORGANIC PV 11 2-3 MECHANISM OF INORGANIC PHOTOVOLTAIC CELL 11 2-4 INORGANIC PHOTOVOLTAIC CELL CHARACTERISTICS 13 2-4-1 Open-Circuit Voltage (VOC) 13 2-4-2 Short-Circuit Current (ISC) 13 2-4-3 Fill Factor (FF) 13 2-4-4 Power Conversion Efficiency (PCE) 14 2-5 MECHANISM OF ORGANIC PHOTOVOLTAIC CELL 15 2-6 ORGANIC PHOTOVOLTAIC CELL CHARACTERISTICS 17 2-6-1 Dark Current Characteristics 17 2-6-2 Open-Circuit Voltage (Voc) 18 2-6-3 Short-Circuit Current (Isc) 18 2-6-4 Fill Factor (FF) 20 2-6-5 Power Conversion Efficiency (PCE) 20 CHAPTER 3 EXPERIMENT 21 3-1 MATERIAL OF ORGANIC SOLAR CELL 21 3-2 PROCESS OF DEVICE FABRICATION 22 3-2-1 Pre-Cleaning ITO substrate 22 3-2-2 Fabrication of ITO Pattern 23 3-2-3 Treatment of ITO Surface 23 3-2-4 Fabrication of Hole Transport Layer 23 3-2-5 Fabrication of Active Layer 23 3-2-6 Laser and Thermal Annealing Treatment 24 3-2-7 Fabrication of Electron Injection Layer and Cathode 24 3-3 MEASUREMENTS 25 3-3-1 Current-Voltage (I-V) measurement system 25 3-3-2 UV-Vis Absorption Spectrum 25 3-3-3 Atomic Force Microscope (AFM) 26 3-3-4 Microscopes Raman Spectrometer 26 3-3-5 X-ray Diffraction (XRD) 27 3-3-6 Space Charge Limited Current (SCLC) 27 3-3-7 External Quantum Efficiency (EQE) 28 CHAPTER 4 RESULTS AND DISCUSSIONS 29 4-1 IMPACT OF AU NPS DOPED, LASER, AND THERMAL ANNEALING ON THE DEVICE 29 4-2 IMPACT OF AU NPS DOPED WITH LASER AND THERMAL ANNEALING ON THE DEVICE 33 4-3 ANALYZE THE POLYMER BLENDED FILM AND DEVICE CHARACTERISTIC 36 4-3-1 Atomic Force Microscopy (AFM) 36 4-3-2 UV-Vis Absorption Spectrum 37 4-3-3 Generation Rate and Dissociation Probability 39 4-3-4 Microscopes Raman Spectrometer 41 4-3-5 X-ray Diffraction (XRD) 43 4-3-6 Space Charge Limited Current (SCLC) 44 4-3-7 External Quantum Efficiency (EQE) 47 CHAPTER 5 CONCLUSION 49 REFERENCES 52

    1. H. sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgarrd, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. W. de Leeuw, “Two-dimensional charge transport in self-organized, high mobility conjugated polymers,” Nature 401, 685 (1999).
    2. Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility,” Appl. Phys. Lett. 69,4108 (1996).
    3. G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design ruled for donord in bulk-heterojunction tandem solar cells-towards 15 % energy-conversion efficiency,” Adv. Mater. 20, 579 (2008).
    4. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183 (1986)
    5. G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: large size, low cost photodetectors with excellent visible-ultraviolet sensitivity,” Appl. Phys. Lett. 64, 3422 (1994).
    6. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science. 270, 1789 (1995).
    7. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15, 1617 (2005).
    8. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nature Mater. 4, 864 (2005).
    9. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with10.6 % power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
    10. http://www.photonics.com/LinearCharts/Default.aspx?ChartID=2
    11. J. Hecht, “Short history of laser development,” Opt. Eng. 49, 091002 (2010).
    12. R Ladenburg, “Research on the anomalous dispersion of gases,” Z. Phys. 48, 15 (1928).
    13. J. P. Gordon, H. J. Zeiger, and C. H. Townes, “Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3,” Phys. Rev. 95, 282 (1954).
    14. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. 18, 269 (1092).
    15. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary wave on metallic surface (sommerfeld’s wave),” J. Opt. Soc. Am. 31, 213 (1941).
    16. A. Hessel, and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Optics. 4, 1275 (1965).
    17. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874 (1957).
    18. J. J. Mock, M. Barbic ,D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755 (2002).
    19. E. Hutter, and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685 (2004).
    20. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788 (1996).
    21. S. Underwood, and P. Mulvaney, “Effect of the solution refractive index on the color of gold colloids,” Langmuir 10, 3427 (1994).
    22. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783 (1985).
    23. E. Hutter, and M.-P. pileni, “Detection of DNA Hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy,” J. Phys. Chem. B. 107, 6497 (2003).
    24. W. Luo, W. V. D.Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, “Polarization-dependent surface enhanced raman scattering from silver 1D nanoparticle arrays,” J. Phys. Chem . C. 112, 11609 (2008).
    25. B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster array,” ACS Nano. 3, 1190 (2009).
    26. K. R. Catchpole, and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumines. 121, 315 (2006).
    27. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
    28. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells. 61, 97 (2000).
    29. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519 (2004).
    30. J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90, 121102 (2007).
    31. M. Agrawal, and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express. 16, 5385 (2008).
    32. H. A. Atwater, and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 (2010).
    33. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98, 043704 (2005).
    34. Y. Kim, S. A. Choulis, J. Nelson, and D. D. C. Bradley, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502 (2005).
    35. M. R. Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phrnyl-(6,6) C61 blends,” Appl. Phys. Lett. 87, 083506 (2005).
    36. Y. Zhao, X. Guo, Z. Xie, Y. Qu, Y. Geng, and L. Wang, “Solvent vapor-induced self assembly and its influence on optoelectronic conversion of poly(3-hexylthiophene): methanofullerene bulk heterojunction photovoltaic cells,” J. Appl. Polym. Sci. 111, 1799 (2009).
    37. T. Hu, F. Zhang, Z. Xu, S. Zhao, X. Yue, and G. Yuan, “Effect of UV-ozone treatment on ITO and post-annealing on the performance of organic solar cells,” Synthetic Met. 159, 754 (2009).
    38. C. J. Ko, Y. K. Lin, and F. C. Chen, “Microwave annealing of polymer photovoltaic devices,” Adv. Mater. 19, 3520 (2007).
    39. H. Flugge, H. Schmidt, T. Riedl, S. Schmale, T. Rabe, J. Fahlbusch, M. Danilov, H. Spieker, J. Schobel, and W. Kowalsky, “Microwave annealing of polymer solar cells with various transparent anode materials,” Appl. Phys. Lett. 97, 123306 (2010).
    40. E. W. Okraku, M. C. Gupta, and K. D. Wright, “Pulsed laser annealing of P3HT/PCBM organic solar cells,” Sol. Energy Mater. Sol. Cells. 94, 2013 (2010).
    41. K. Kubota, T. Kato, and C. Adachi, “Control of the molecular orientation of a 2,2(')-bithiophene-9,9-dioctylfluorene copolymer by laser annealing and subsequent enhancement of the field effect transistor characteristics,” Appl. Phys. Lett. 95, 073303 (2009).
    42. F. H. Wu, “The study of organic solar cell doped with metallic nanoparticle,” Master dissertation, Department of Photonics, National Sun Yat-Sen University, Taiwan (2009).
    43. H. Spanggaard, and F. C. Krebs, “A brief history of the development of organic and polymeric photovoltaics,” Sol. Energy Mater. Sol. Cells. 83, 125 (2004).
    44. S. M. Sze, “Semiconductor devices: physics and technology-2nd ed,” John Wiley and Sons, (1985).
    45. J. C. Bernede, “Organic photovoltaic cell: history, principle and techniques,” J. Chil. Chem. Soc. 53, 1549 (2008).
    46. C. L. Lee, “Plsmonic-enhanced organic solar cells incorporating gold nanoparticels,” Master dissertation, Institute of Display, National Chiao Tung University, Taiwan (2009).
    47. P. Vanlaeke, A. Swinnen, I. Haeldernans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D. Hean, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells. 90, 2150 (2006).
    48. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2 % efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84, 3013 (2004).
    49. V. D. Mihailetchi, P. W. M. Mlom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar celld,” J. Appl. Phys. 94, 6849 (2003).
    50. C. M. Ramsdale, J. A. Barker, A. C. Arias, J. D. Mackenzie, and R. H. Friend, “The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices,” J.Appl. Phys. 92, 4266 (2002).
    51. T. Kietzke, S. A. M. Egbe, H.-H. Horhold, and D. Neher, “Comparatives study of M3EH-PPV based bilayer photovoltaic devices,” Macromolecules 39, 4018 (2006).
    52. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11, 374 (2001).
    53. A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganas, “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative,” Appl. Phys. Lett. 84, 1609 (2004).
    54. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells- towards 10 % energy–conversion efficiency,” Adv. Mater. 18, 789 (2006).
    55. N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, “Ideal diode equation for organic heterojunctions. I. derivation and application,” Phys. Rev. B 82, 155305 (2010).
    56. S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS Bull. 30, 28 (2005).
    57. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
    58. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. V. D. Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
    59. J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron. 10, 416 (2009).
    60. K. H. Hsiao, “Study of silver oxide anode of single donor-acceptor heterojunction organic photovoltaic cell,” Master dissertation, Institute of Microelectronics, National Cheng Kung University, Taiwan (2009).
    61. K. Fehse, K. Walzer, K. Leo, W. Lovenich, A. Elschner, “Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes,” Adv. Mater. 19, 441 (2007).
    62. L. S. C. Pingree, B. A. MacLeod, D. S. Ginger, “The changing face of PEDOT:PSS films: substrate, bias, and processing effects on vertical charge transport,” J. Phys. Chem. C 21, 7922 (2008).
    63. http://en.wikipedia.org/wiki/1,2-Dichlorobenzene
    64. K. Furukawa, Y. Terasak, H. Ueda, M. Matsumura, “Effect of a plasma treatment of IT0 on the performance of organic electroluminescent devices,” Synthetic Met. 91, 99 (1997).
    65. T. Kawai, Y. Maekawa, M. Kusabiraki, “Plasma treatment of ITO surfaces to improve luminescence characteristics of organic light-emitting devices with dopants,” Surf. Sci. 601, 5276 (2007).
    66. K. P. Kim, A. M. Hussain, D. K. Hwang, S. H. Woo, H. K. Lyu, S. H. Baek, Y. Jang, J. H. Kimy, “Work function modification of indium–tin oxide by surface plasma treatments using different gases,” Jpn. J. Appl. Phys. 48, 021601 (2009).
    67. G. Li, Y. Yao, H. Yang, V. Shirotriya, G. Yang, Y. Yang, ‘‘Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes,” Adv. Funct. Mater. 17, 1636 (2007).
    68. C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Appl. Phys. Lett. 80, 1288 (2002).
    69. Z. B. Wang, M. G. Helander, M. T. Greiner, J. Qiu, and Z. H. Lu, “Carrier mobility of organic semiconductors based on current-voltage characteristics,” J. Appl. Phys. 107, 034506 (2010)
    70. M. A. Lampert, P. Mark, “Current injection in solids,” Academic Press: New York (1970).
    71. P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect,” J. Phys. D Appl. Phys. 3, 151 (1970).
    72. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic naonparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano. 5, 959 (2011).
    73. M. A. V. Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8, 3486 (2006).
    74. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
    75. V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, “Photocurrent generation in polymer-fullerene bulk heterojunctions,” Phys. Rev. Lett. 93, 216601 (2004).
    76. V. D. Mihailetchi, H. Xie, B. D. Boer, L. J. A. Koster, and P. W. M. Blom, “Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk heterojunction solar cells,” Adv. Funct. Mater. 16, 699 (2006).
    77. M. H. Chang, “Polymer field-effect transistor fabricated by photosensitive polyimide gate dielectrics,” Master dissertation, Department of Photonics, National Cheng Kung University, Taiwan (2006).
    78. J. L. Bredas, “Relationship between band gap and bond length alternation in organic conjugated polymers,” J. Chem. Phys. 82, 3808 (1985).
    79. V. Shrotriya, J. Y. Ouyang, R. J. Tseng, G. Li, and Y. Yang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films,” Chem. Phys. Lett. 411, 138 (2005).
    80. J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, and Y. Yang, “High-conductivity poly(3,4-Ethylenedioxythiophene):poly(styrenesulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15, 203 (2005).
    81. B. D. Cullity, “Elements of X-Ray Diffraction”, Addison-Wesley, Reading, MA (1956).
    82. A. L. Patterson, “The Scherrer formula for X-ray particle size determination,” Phys. Rev. 56, 978 (1939).

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE