| 研究生: |
吳建彣 Wu, Jian-Wen |
|---|---|
| 論文名稱: |
以有限元素法分析電子束熔融金屬積層製造之熱傳問題 Finite Element Analysis of Heat Transfer in Additive Manufacturing Process Using Electron Beam Melting |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 積層製造 、電子束熔融技術 、EBM 、相變化熱傳 、潛熱 |
| 外文關鍵詞: | additive manufacturing, Electron beam melting, phase-change, latent heat |
| 相關次數: | 點閱:72 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子束熔融技術,是金屬積層製造成型技術的一種,而金屬積層製造目前所遇到的問題皆與溫度息息相關,因此探討金屬積層製造過程中相變化熱傳問題是本研究主要目的。本文採用鈦金屬作為本研究材料,並搭配有限元素法撰寫程式來分析電子束熔融製造之熱傳情況,並以等效比熱法來處理潛熱的效應,於處理潛熱部分加入鬆弛法及調整人工液固共存區的大小來協助收斂。本文研究方法分為兩部分,於測試部分為了確保所建立地數值模式的可行性,本文從一維熱傳問題、二維固定熱源、移動熱源到疊層一一探討,最後與模擬軟體COMSOL的結果做比對。確定建立的數值模型可行之後,再套入金屬中心提供的實際加工參數,模擬實際狀況的熱傳情形。由數值分析結果可發現,有無考慮潛熱的溫度分布有明顯的差異,因此不宜忽略潛熱的效應。電子束熱源瞬間功率極高可使鈦金屬迅速升溫熔化,熱源照射方向之溫度梯度大,故疊層厚度太厚使表層熱源無法讓上一層達熔點溫度,造成層與層無法有效熔接成型,易呈鬆散狀。經由實際條件測試發現經五次熱源加熱以及四次疊層,將每次加熱分別利用程式以及COMSOL所得到之溫度鋒值做比較,發現兩者最大誤差百分比為4.4%,最小誤差百分比為0.7%可知,兩者模擬結果相當一致!由這些結果可知經由數值模擬的探討,能預測加熱物件的暫態溫度場分布,希望有助於金屬積層製造之熱傳相關研究。
Electron beam melting (EBM) is one of the additive manufacturing processes. So far, most of the encountered problems of metal additive manufacturing are all related to the temperature field. Accordingly, the main purpose of this study is to analyze the heat transfer problem of phase change during the manufacturing process. The numerical method adopted in this study is finite element method. On the basis of the finite element method theory, the heat transfer problem of EBM process is analyzed by the self-writing programs in FORTRAN and simulated by the software, COMSOL, simultaneously. Next, the results calculated by the FORTRAN programs are compared to those simulated by COMSOL. In this thesis, the effective specific heat method is applied to deal with the effect of latent heat. Furthermore, the relaxation method and adjustable range of the artificial mushy zone is used to improve the convergence of temperature. The process of this study starts from the one-dimensional heat transfer problem, the two-dimensional one with fixed heat source or the mobile heat source to the layer-adding heat transfer problem. At last, the actual process parameters provided by the MIRDC are used to simulate the heat transfer problem of actual manufacturing process of EBM. The results reveal that whether consider the effect of latent heat or not makes significant difference to the temperature field; therefore the effect of latent heat should not be ignored. Besides, the thickness effect of the adding-layer should be considered. Because of the high temperature gradient in y-direction, too thick adding-layer easily causes the layers unable to fuse together effectively. Moreover, the minimum percent error between the FORTRAN programs and COMSOL is 0.7%, and the maximum percent error is 4.4%. This shows that the results analyzed by FORTRAN programs and simulated by COMSOL are consistent with each other and have the same trend. The results of this study are expected to be helpful to the additive manufacturing researchers.
[1] 朱雲鵬, "名家-工業革命4.0," in 中國時報, ed, 2015.
[2] J. Lee, H.-A. Kao, and S. Yang, "Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment," Procedia CIRP, vol. 16, pp. 3-8, 2014.
[3] 劉芸 and 朱瑞博, "第三次工業革命的核心本質及其推進路徑," 中國浦東幹部學院學報, 2013.
[4] U. de Oliveira, V. Ocelík, and J. T. M. De Hosson, "Analysis of coaxial laser cladding processing conditions," Surface and Coatings Technology, vol. 197, pp. 127-136, 7/22/ 2005.
[5] D. Cormier, O. Harrysson, and H. West, "Characterization of H13 steel produced via electron beam melting," Rapid Prototyping Journal, vol. 10, pp. 35-41, 2004.
[6] J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, "Selective laser melting of iron-based powder," Journal of Materials Processing Technology, vol. 149, pp. 616-622, 6/10/ 2004.
[7] A. Hunter, "純鈦及鈦合金特性及製程 介紹," 中工高雄會刊, vol. 21, 2013.
[8] 準分子雷射結晶技術製作多晶矽薄膜之巨觀與巨微觀凝固分析: National Cheng Kung University Department of Engineering Science, 2008.
[9] 陳毓儒 and Y.-R. Chen, "非晶矽薄膜利用準分子雷射結晶之實驗研究與有限元素的熱傳分析."
[10] 張宇良, "利用有限元素法求解相變化熱傳問題," 國立成功大學工程科學系碩士論文, 2012.
[11] H. Kodama, "Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer," Review of Scientific Instruments, vol. 52, pp. 1770-1773, 1981.
[12] C. W. Hull, "Apparatus for production of three-dimensional objects by stereolithography," ed: Google Patents, 1986.
[13] P. K. Venuvinod and W. Ma, Rapid Prototyping: Springer US, 2004.
[14] 邱慶龍. (2014, 二月) 積層製造的產業發展現況與未來. 機械工業. 2-17.
[15] 李幸宜, "國產金屬3D列印 開創傳統產業新契機," 工業技術與資訊月刊, vol. 284, 2015.
[16] 李鑫, 邵茂官, and 張冰, "快速成形與製造技術發展現狀與趨勢," in CPRJ 中國塑料橡膠, ed, 2008.
[17] 劉昌云, "快速成型技術研究現狀與發展," 鑄造技術, pp. 712-714, 2012.
[18] J. Schwerdtfeger, R. F. Singer, and C. Körner, "In situ flaw detection by IR‐imaging during electron beam melting," Rapid Prototyping Journal, vol. 18, pp. 259-263, 2012.
[19] 汤慧萍, 王建, 逯圣路, and 杨广宇, "电子束选区熔化成形技术研究进展," 中国材料进展, pp. 225-235, 2015.
[20] H. B. Qi, Y. N. Yan, F. Lin, W. He, and R. J. Zhang, "Direct metal part forming of 316L stainless steel powder by electron beam selective melting," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 220, pp. 1845-1853, November 1, 2006 2006.
[21] M. Kahnert, S. Lutzmann, and M. Zaeh, "Layer formations in electron beam sintering."
[22] A. Simchi, "Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features," Materials Science and Engineering: A, vol. 428, pp. 148-158, 7/25/ 2006.
[23] 刘海涛, 赵万华, and 唐一平, "Process Investigation of Direct Metal Fabrication Based on Electron Beam Melting," 西安交通大学学报, vol. 41, pp. 1307-1310, 2007-11-10 2007.
[24] 賈文鵬, 湯慧萍, and 劉海彥, "A method for manufacturing metal part by SEBM accompanied by annealing process," 2008.
[25] H. P. Tang, G. Y. Yang, W. P. Jia, W. W. He, S. L. Lu, and M. Qian, "Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting," Materials Science and Engineering: A, vol. 636, pp. 103-107, 6/11/ 2015.
[26] 鎖紅波, 陳哲源, and 李晉煒, "電子束熔融快速制造Ti-6Al-4V的力學性能," presented at the 第13屆全國特種加工學術會議論文集, 2009.
[27] B. Cheng and K. Chou, "Melt pool geometry simulations for powder-based electron beam additive manufacturing."
[28] R. R. Namburu and K. K. Tamma, "Effective modeling/analysis of isothermal phase change problems with emphasis on representative enthalpy architectures and finite elements," International Journal of Heat and Mass Transfer, vol. 36, pp. 4493-4497, 12// 1993.
[29] J. Stefan, "Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere," Annalen der Physik, vol. 278, pp. 269-286, 1891.
[30] Y. C. Liu and L. S. Chao, "Modified effective specific heat method of solidification problems," Materials Transactions, vol. 47, pp. 2737-2744, Nov 2006.
[31] J. S. Hsiao, "An Efficient Algorithm for Finite-Difference Analyses of Heat-Transfer with Melting and Solidification," Numerical Heat Transfer, vol. 8, pp. 653-666, 1985.
[32] K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom, The Finite Element Method for Engineers, 4th ed., 1994.
[33] A. J. Baker, "Finite Element Computational Fluid Mechanics," vol. 83, p. 41874, 1983.
[34] R. D. Cook, Concepts and applications of finite element analysis: John Wiley & Sons, 2007.
[35] O. C. Zienkiewicz, R. L. Taylor, O. C. Zienkiewicz, and R. L. Taylor, The finite element method vol. 3: McGraw-hill London, 1977.
[36] D. L. Collatz, The Numerical Treatment of Differential Equations: Springer Berlin Heidelberg, 1996.
[37] P.Dunne, "Complete polynomial displacement fields for finite element method," Aeronautical Journal, vol. 72, 1968.
[38] P. Davis and P. Rabinowitz, "Abscissas and weights for Gaussian quadratures of high order," National Bureau of Standards, vol. 56, pp. 35-37, 1956.
[39] R. Boyer, G. Welsch, and E. W. Collings, Materials Properties Handbook: Titanium Alloys. ASM International, 1994.