簡易檢索 / 詳目顯示

研究生: 李易謙
Lee, I-Chien
論文名稱: 金氧半電晶體製程相容之閘極控制橫向型雙載子電晶體之研究
The study of CMOS Technology Comparable Gate-Controlled Lateral Bipolar Transistor
指導教授: 趙治平
Chao, Chih-Ping
方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 124
中文關鍵詞: 橫向雙載子電晶體電流增益
外文關鍵詞: lateral, current gain, BJT
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在早期的積體電路中雙載子是唯一可用的技術, 隨著對於氧化矽介面的了解和改善, 雙載子的技術一度遠優於NMOS和PMOS。但隨後CMOS漸漸的變成了主流技術在1970年初期,雖然CMOS技術有極大的進步和廣泛的應用在積體電路上,但雙載子電路仍有不可被取代的優點:較快速度與較高的電流驅動力。

    為了要跟上快速發展的高速網路,越來越多的高速元件(SiGe HBT,GaAs HBT, InP HBT……等等) 被設計來實現這些電路。但儘管這些元件擁有多數較好的效能,他們卻有共通的缺點---昂貴的價格和複雜的製程。相反的CMOS製程不僅非常成熟且又價格便宜,若用CMOS製程來設計出高速元件,那麼在高速電路上將會是個很重要的角色;本論文的主角Gate-controlled Lateral BJT是個符合CMOS製程,且又擁有良好的直流特性,對於電流增益而言,NPN和PNP皆已分別達到200及150;而高頻特性中,截止頻率和最大震盪頻率都已經快達20GHz。這些良好的特性已足夠取代其他的高速元件,因此吾人將在此論文中詳細的介紹Gate-controlled Lateral BJT 的結構、工作原理以及特性參數

    Bipolar technology was the only available technology in early IC production. With better understanding and improvements in the oxide-silicon interface, bipolar technology was surpassed by PMOS and NMOS technology. Subsequently, CMOS has become the mainstream technology since the early 1970s. Even, CMOS technology has tremendous progress and extensive application in ICs, Bipolar ICs still offer unique advantages; they have faster speed and higher current-driving capability than CMOS ICs.

    In order to keep up with the rapid deployment of high-speed networks, more and more high-speed devices (SiGe HBT,GaAs HBT, InP HBT……etc.) were designed to realize the high-speed circuits. Though these devices have many good advantages, there are two cruel drawbacks—expensive cost and complex process. On the other hand, CMOS process is not only mature but also cheaper. If we can design the high-speed device with CMOS process, it will become the important role in high-speed ICs. The Gate-controlled Lateral BJT can be made with CMOS process and it has very good DC performance. The current gain of NPN and PNP is more than 200 and 150 respectively. And the cut-off frequency and max oscillation frequency is more than 20GHz. These performances are good enough to substitute for other high-speed devices. We will discuss all structures and characteristics in this thesis.

    Table of Contents Chinese Abstract English Abstract Table of Contents Figure Captions Chapter 1 --- Introduction 1-1 Conventional property , drawback………………………1 1-2 Merit of the new novel LBJT.………………………………2 1-3 Framework of the thesis …………………………………3 Chapter 2 --- Lateral Bipolar Junction Transistor 2-1 Structure of LBJT …………………………………………4 2-2 Electrical characteristic of LBJT…………………………5 2-2.1 operation principle 2-3 Review the split of LBJT ………………………………8 Chapter 3 --- Measurement Environment setup & parameters Extraction 3-1 DC measurement …………………………………………10 3-1.1 equipment 3-1.2 DC parameters extraction 3-2 RF measurement …………………………………………11 3-2.1 S-parameter 3-2.2 equipment and VNA Standard Calibration Technique and Verification 3-2.3 de-embedding methodology 3-2.4 RF parameters extraction 3-3 Flicker Noise ………………………………………………15 3-3.1 equipment 3-3.2 parameters 3-4 Noise Figure ………………………………………………17 3-4.1 equipment and measurement Chapter 4 --- Dimension Optimization Design for LBJT 4-1 Perimeter and area design of Emitter for LBJT ………23 4-1.1 For DC performance 4-1.2 For RF performance 4-2 Array design of LBJT …………………………………26 4-2.1 For DC performance 4-2.2 For RF performance Chapter 5 --- Doping profile design for LBJT 5-1 Doping profile split………………………………………28 5-2 Characteristic comparisom……………………………29 Chapter 6 --- Conclusion ……………………30 Reference …………………32 Acknowledgement

    [1] Sophie Verdonckt-Vandebroek, “High-Gain Lateral p-n-p Bipolar Action in a p-MOSFET Structure” IEEE Electron Device Letters, Vol. 13, No. 6, June 1992.

    [2] Kuntal Joardar “An Improved Analytical Model for Collector Currents in Lateral Bipolar Transistors” IEEE Transactions on Electron Device, Vol. 41, No.3, March 1994

    [3] M.J.Deen, Duljit S. Malhi, Z.X. Yan “ A New Mixer Circuit Using Gate-Controlled LPNP BJT ”

    [4] Zhixin Yan, M. Jamal Deen, Duljit S. Malhi, “Gate-Controlled Lateral PNP BJT : Characteristics, Modeling and Circuit Application”, IEEE Transactions on Electron Device, Vol. 44, No.1, January 1997

    [5] Dermot MacSweeney, Kevin G. McCarthy, Alan Mathewson “A SPICE Compatible Subcircuit Model for Lateral Bipolar Transistors in a CMOS Process” IEEE Transactions on Electron Device, Vol. 45, No.9, January 1998

    [6] Yih-Feng Chyan, Tony G. Ivanov, Michael S. Carroll, William J.Nagy “A 50-GHz 0.25-um High-Energy Implanted BiCMOS (HEIBiC) Technology for Low-Power High-Integration Wireless-Communication Systems”, 1998 Symposium on VLSI Technology Digest of Technical Papers.

    [7] Song Ye , Koji Yano, C. Andre . T . Salama “1.9GHz Mixer Using a Lateral Bipolar Transistor”

    [8]Sankaran Aniruddhan, Min Chu, and David J . Allstot, “A Lateral-BJT-Biased CMOS Voltage-Controlled Oscillator”

    [9]JAE-SUNG RIEH, David Greenberg, and ANDREAS STRICKER, “Scaling og SiGe Heterojunction Bipolar Transistors” PROCEEDINGS OF THE IEEE, VOL.93, NO.9, Septmber 2005

    [10] Tzuen-His Huang, Ming-Jer Chen,“Base Current Reversal Phenomenon in a CMOS Compatible High Gain n-p-n Gated Lateral Bipolar Transistor”, IEEE Transactions on Electron Device, Vol. 42, No.2,February 1995

    [11] Tzuen-His Huang, Ming-Jer Chen,“Dependence of Current Match on Back-Gate Bias in Weakly Inverted MOS Transistors and Its Modeling”, IEEE Journal of Solid-State Circuits, Vol. 31, No.2,February 1996

    [12] Tzuen-His Huang, Ming-Jer Chen,“Base-Gate Forward Bias Method for Low-Voltage CMOS Digital Circuits”, IEEE Transactions on Electron Device, Vol. 43, No.6,June 1996

    [11] C.Y. Chang, S.M. Sze, ULSI TECHNOLOGY

    [12] A. van der Ziel, Noise in Solid State Devices and Circuits. New York: Wiley, 1986

    無法下載圖示 校內:2105-07-06公開
    校外:2105-07-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE