| 研究生: |
蔡易霑 Tsai, I-Chan |
|---|---|
| 論文名稱: |
碳化矽功率元件之主動式閘極驅動器設計 Design of Active Gate Driver for Silicon Carbide Power Devices |
| 指導教授: |
張簡樂仁
Chang-Chien, Le-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 主動式閘極驅動器 、碳化矽 、電磁干擾 、電壓電流變化率 |
| 外文關鍵詞: | Active gate driver, SiC, EMI, Slew rate |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
寬能隙功率元件,如碳化矽,具有高切換速度和低切換損耗的優勢,被認為是未來電力電子產業高功率元件的關鍵零組件。然而,碳化矽的高切換速度可能導致電磁干擾和誤導通等負面影響。為了在能量損耗和切換速度之間取得平衡,主動式閘極驅動方法被發展了出來,它可以動態地調整開關的切換速度。本文提出了一種相對拓撲結構簡單的主動式閘極驅動器,可以動態地調整導通時的電壓電流變化率,並且通過雙脈衝測試的實驗結果驗證了驅動器的有效性。本論文也建構了一套MATLAB/Simulink模型,比較模擬結果與實測結果,驗證模型的可信度,並進一步以此模型分析主動式閘極驅動器的參數,透過此模型驗證主動式閘極驅動器對變流器電磁干擾雜訊的抑制效果。
Wide-bandgap (WBG) power devices, such as silicon carbide (SiC), are advantageous due to their high switching speed and low switching loss. They are considered critical components for high-power power electronics applications. However, the high speed switching of SiC can lead to detri-mental effects like electromagnetic interference (EMI) and false turn-on. This thesis proposes a relatively simple active gate driver (AGD) topology that adjusts dv/dt and di/dt for turn-on switching transient. The effectiveness of the AGD is validated through experimental results from double-pulse tests. Additionally, a MATLAB/Simulink model is constructed to validate the re-liability of the simulation results by comparing them with experimental data. This will enable us to use the simulation model for analyzing AGD param-eters and confirming its effectiveness in suppressing EMI noise.
[1] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, “A Survey of Wide Bandgap Power Semiconductor Devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155–2163, May 2014.
[2] I. T. AG, “Wide Bandgap Semiconductors (SiC/GaN) - Infineon Technologies.” Availa-ble:https://www.infineon.com/cms/en/product/technology/wide-bandgap-semiconductors-sic-gan/.
[3] M. LaPedus, “SiC Demand Growing Faster Than Supply,” Semicon-ductor Engineering, May 23, 2019. Availa-ble:https://semiengineering.com/sic-demand-growing-faster-than-supply/.
[4] S. Ji, Z. Zhang, and F. Wang, “Overview of high voltage sic power semiconductor devices: development and application,” CES Trans. Electr. Mach. Syst., vol. 1, no. 3, pp. 254–264, Sep. 2017.
[5] S. Jahdi, O. Alatise, J. A. Ortiz Gonzalez, R. Bonyadi, L. Ran, and P. Mawby, “Temperature and Switching Rate Dependence of Crosstalk in Si-IGBT and SiC Power Modules,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 849–863, Feb. 2016.
[6] S. Zhao, X. Zhao, Y. Wei, Y. Zhao, and H. A. Mantooth, “A Review of Switching Slew Rate Control for Silicon Carbide Devices Using Active Gate Drivers,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 4, pp. 4096–4114, Aug. 2021.
[7] Y. Ren et al., “Voltage Suppression in Wire-Bond-Based Multichip Phase-Leg SiC MOSFET Module Using Adjacent Decoupling Con-cept,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8235–8246, Oct. 2017.
[8] L. Balogh, “Design and Application Guide For High Speed MOSFET Gate Drive Circuits” in Proc. Power Supply Design Seminar, May 2001, pp. 1–37.
[9] S. Yin et al., “Gate driver optimization to mitigate shoot-through in high-speed switching SiC half bridge module,” in 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Jun. 2015, pp. 484–491.
[10] 蘇建豪, “疊接式氮化鎵高電子遷移率電晶體之參數分析與振鈴抑制,” 碩士論文, 國立成功大學, 2017.
[11] Y. Lobsiger and J. W. Kolar, “Closed-Loop dm i/d m t and d m v/dm t IGBT Gate Driver,” IEEE Trans. Power Electron., vol. 30, no. 6, pp. 3402–3417, Jun. 2015.
[12] A. P. Camacho, V. Sala, H. Ghorbani, and J. L. R. Martinez, “A Novel Active Gate Driver for Improving SiC MOSFET Switching Trajectory,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9032–9042, Jan. 2017.
[13] N. Oswald, P. Anthony, N. McNeill, and B. H. Stark, “An Experimental Investigation of the Tradeoff between Switching Losses and EMI Generation With Hard-Switched All-Si, Si-SiC, and All-SiC Device Combinations,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2393–2407, May 2014.
[14] W. Perdikakis, M. J. Scott, K. J. Yost, C. Kitzmiller, B. Hall, and K. A. Sheets, “Comparison of Si and SiC EMI and Efficiency in a Two-Level Aerospace Motor Drive Application,” IEEE Trans. Transp. Electrifi-cation, vol. 6, no. 4, pp. 1401–1411, Feb. 2020.
[15] J.-S. Lai, X. Huang, E. Pepa, S. Chen, and T. W. Nehl, “Inverter EMI modeling and simulation methodologies,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 736–744, Jun. 2006.
[16] 王信雄, “返馳電源傳導電磁干擾抑制 Part 1.pdf.” Mar 2022.
[17] S. S. Ahmad and G. Narayanan, “Double pulse test based switching characterization of SiC MOSFET,” in 2017 National Power Electronics Conference (NPEC), Feb. 2017,pp. 319–324.
[18] M. Rodríguez, A. Rodríguez, P. F. Miaja, D. G. Lamar, and J. S. Zúniga, “An Insight into the Switching Process of Power MOSFETs: An Im-proved Analytical Losses Model,” IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1626–1640, Jun. 2010.
[19] K. Peng, S. Eskandari, and E. Santi, “Analytical loss model for power converters with SiC MOSFET and SiC schottky diode pair,” in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2015, pp. 6153–6160.
[20] S. Zhao et al., “Adaptive Multi-Level Active Gate Drivers for SiC Power Devices,” IEEE Trans. Power Electron., vol. 35, no. 2, pp. 1882–1898, Feb. 2020.
[21] S. Zhao, X. Zhao, A. Dearien, Y. Wu, Y. Zhao, and H. A. Mantooth, “An Intelligent Versatile Model-Based Trajectory-Optimized Active Gate Driver for Silicon Carbide Devices,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 1, pp. 429–441, Mar. 2020.
[22] S. Acharya, X. She, F. Tao, T. Frangieh, M. H. Todorovic, and R. Datta, “Active Gate Driver for SiC-MOSFET-Based PV Inverter With En-hanced Operating Range,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1677–1689, Mar. 2019.
[23] G. Engelmann, T. Senoner, and R. W. De Doncker, “Experimental in-vestigation on the transient switching behavior of SiC MOSFETs using a stage-wise gate driver,” CPSS Trans. Power Electron. Appl., vol. 3, no. 1, pp. 77–87, Mar. 2018.
[24] Infineon Technology, “EiceDRIVERTM 1ED32xxMC12H Two-level slew-rate control (2L-SRC)” Datasheet, April 2021.
[25] Z. Zeng and X. Li, “Comparative Study on Multiple Degrees of Freedom of Gate Drivers for Transient Behavior Regulation of SiC MOSFET,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8754–8763, Oct. 2018.
[26] K. Yamaguchi, K. Katsura, T. Yamada, and Y. Sato, “Comprehensive evaluation of gate boost driver for SiC-MOSFETs,” in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2016, pp. 1–8.
[27] A. Marzoughi, R. Burgos, and D. Boroyevich, “Active Gate-Driver With dv/dt Controller for Dynamic Voltage Balancing in Se-ries-Connected SiC MOSFETs,” IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 2488–2498, Apr. 2019.
[28] B. Sun, R. Burgos, X. Zhang, and D. Boroyevich, “Active dv/dt con-trol of 600V GaN transistors,” in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2016, pp. 1–8.
[29] A. Schindler, B. Koeppl, B. Wicht, and J. Groeger, “10ns Variable current gate driver with control loop for optimized gate current timing and level control for in-transition slope shaping,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2017, pp. 3570–3575.
[30] W. Frank and H. Husken, “Current source gate drivers boost the turn-on performance of IGBT,” Bodo’s Power Syst., Nov.2018.Available: https://www.infineon.com/dgdl/InfineonGate_Drivers_Boost_IGBT_Perfor-mance_Bodos_Power_SystemsART-v01_00-EN.pdf?fileId=5546d46266f85d6301670826b055322b
[31] H. C. P. Dymond, D. Liu, J. Wang, J. J. O. Dalton, and B. H. Stark, “Multi-level active gate driver for SiC MOSFETs,” in 2017 IEEE En-ergy Conversion Congress and Exposition (ECCE), Oct. 2017, pp. 5107–5112.
[32] X. Yang, Y. Yuan, X. Zhang, and P. R. Palmer, “Shaping High-Power IGBT Switching Transitions by Active Voltage Control for Reduced EMI Generation,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1669–1677, Mar. 2015.
[33] ROHM, “SCT3022AL N-channel SiC power MOSFET.” Datasheet, Dec. 2022.
[34] “ADuM4121_4121-1-1503674.pdf.” Accessed: Feb. 18, 2023. [Online]. Available: https://www.mouser.tw/datasheet/2/609/ADuM4121_4121-1-1503674.pdf
[35] “Si827x.pdf.” Accessed: Feb. 18, 2023. [Online]. Available: https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/Si827x.pdf
[36] W. Zhang and M. Begue, “Common Mode Transient Immunity (CMTI) for UCC2122x Isolated Gate Drivers,” Aug 2018. Available: https://www.ti.com/lit/pdf/slua909
[37] “lm217-1849593.pdf.” Accessed: Jun. 02, 2023. [Online]. Available: https://www.mouser.com/datasheet/2/389/lm217-1849593.pdf
[38] Fuji Electric,“7MBR100VP060-50 IGBT MODULE,” Datasheet, March 2014.
[39] H. Qin, C. Ma, Z. Zhu, and Y. Yan, “Influence of Parasitic Parameters on Switching Characteristics and Layout Design Considerations of SiC MOSFETs,” J. Power Electron., vol. 18, no. 4, 2018.
[40] Ting-Hao Yeh, “W01_CG Solver and Lossy Material,”ANSYS Taiwan, V2018.2 Release.
[41] 吳崇嘉, “IGBT全橋模組功率損耗分析暨PCB佈局寄生參數估算,” 碩士論文, 國立成功大學, 2020.
[42] Ting-Hao Yeh, “W03_AC RL solver,” ANSYS Taiwan, V2018.2 Re-lease.
[43] 陳念慈, “碳化矽功率元件應用於永磁同步馬達驅動器之系統響應分析,” 碩士論文, 國立成功大學, 2018.
校內:2028-08-22公開