簡易檢索 / 詳目顯示

研究生: 鄭凱中
Cheng, Kai-Chung
論文名稱: 居家服務機器人同步定位與地圖建立及行為策略之設計與實現
Design and Implementation of SLAM and Behavior Strategy for Home Service Robot
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 81
中文關鍵詞: 居家機器人地圖建立行為策略
外文關鍵詞: Home Service Robot, Mapping, Behavior Strategy
相關次數: 點閱:66下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係探討居家服務機器人同步定位與地圖建立以及行為策略之設計與實現。本論文開發出一個新的居家服務機器人平台,包括機器人運動控制、同步定位與地圖建立、基於已知地圖之自我定位、以及機器人自主導航與行為策略。SLAM模組使機器人可以在陌生環境下學習與認知環境資訊。此模組主要截取雷射之距離資訊與里程計資訊來學習認知陌生環境。本論文藉由結合傳統Rao-Blackwellised 粒子濾波器與KLD-sampling方法來完成實現SLAM模組。自主定位係使用蒙地卡羅法與晶格地圖來記錄定位的資訊。行為策劃部份,則經由檢查雷射距離資訊映射到地圖的晶格是否落在門的區域來偵測門。在全域路徑規劃部份,本論文主要採用A*演算法,並改進ND導航演算法以達成避障的功能。利用融合上述功能所提供之資訊來達成機器人的行為策略。最後,由實驗結果來驗證所設計之機器人系統的可行性與效益。

    This thesis mainly concerns about the development of the simultaneous localization and mapping (SLAM) and behavior strategy for the home service robot. We develop a new platform for home service robot, involving many topics such as motion control, SLAM algorithm, self-localization based on known map, safe navigation, and behavior strategy. The main function of the SLAM module is to learn the map for the unknown environment. The information of the SLAM module consists of the distance received by laser scanner and the movement of the robot computed by odometer. In SLAM module, an approach for learning environment is developed by combing the KLD-sampling method and the conventional Rao-Blackwellised particle filter method. The localization based on known map of the developed robot is realized via the Monte Carlo Localization (MCL) and the belief of the robot in its position is represented by a position probability grid map. In behavior strategy, a method for door detection by checking the end points fall into the region of the door is proposed. For navigation part, we adopt the A* algorithm for global path planning. In addition, we improve the Nearness Diagram (ND) method for local obstacle avoidance. The behavior strategy for the home service robot is also examined. Finally, the experiment results demonstrate the capability of SLAM and strategy system, and the efficiency and validity in the home service robot applications.

    Abstract Ⅰ Acknowledgement Ⅲ Contents Ⅳ List of Figures ⅥI List of Tables Ⅹ Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2. Hardware of the Home Service Robot 4 2.1 Introduction 4 2.2 System Architecture of the Home Service Robot 5 2.3 Hardware Architecture of the Home Service Robot 7 2.3.1 Measurement System 7 2.3.2 Actuator and Encoder Module 8 2.3.3 Power System 12 2.3.4 Central Process Unit: Notebook and NIOS 14 2.3.5 Hardware Configuration of the Home Service Robot 18 2.4 Summary 19 Chapter 3. Simultaneous Localization and Mapping 20 3.1 Introduction 20 3.2 Motion System of the Home Service Robot 21 3.2.1 Kinematic Equation for the Odometer 22 3.2.2 Motion Model of the Robot 24 3.3 Measurement System of the Home Service Robot 26 3.4 SLAM module of the Home Service Robot 29 3.4.1 Rao-Blackwellised Particle Filters for SLAM 30 3.4.2 Improved SLAM Method 33 3.5 Summary 41 Chapter 4. Behavior Strategy of the Home Service Robot 42 4.1 Introduction 42 4.2 Overview of the Framework 43 4.3 Common Functions of the Framework 44 4.3.1 Door Detection 46 4.3.2 Global Path Planning 49 4.3.3 Obstacle Avoidance 51 4.4 Behavior Strategy for Home Service Robot 55 4.4.1 The Strategy for Follow Me 55 4.4.2 The Strategy for Who Is Who 58 4.5 Summary 61 Chapter 5. Experimental Results 62 5.1 Introduction 62 5.2 Experimental of the Simultaneous Localization and Mapping 63 5.3 Experimental results of the Localization based on known map 68 5.4 Experimental results of the Follow Me Task 70 5.5 Experimental results of tasks for RoboCup@Home Competition 72 Chapter 6. Conclusion and Future Work 76 6.1 Conclusion 76 6.2 Future Work 77 References 78 Biography 81

    [1] H. Kobayashi and M. Yanagida, “Moving Object Detection by an Autonomous Guard Robot,” in Proceedings of 4th IEEE International Workshop on Robot and Human Communication, pp. 323-326, Tokyo, 1995.
    [2] Y. Shimosasa, J. Kanemoto, K. Hakamada, H. Horii, T. Ariki, Y. Sugawara, F. Kojio, A. Kimura, and S. Yuta, “Security service system using autonomous mobile robot,” in Proceedings of IEEE Conference on Systems, Man, and Cybernetics, 1999, vol.4 pp. 825-829.
    [3] G. Bekey, Autonomous robots: from biological inspiration to implementation and control: The MIT Press, 2005.
    [4] Y. R. Oh, J. S. Yoon, J. H. Park, M. Kim, and H. K. Kim, “A Name Recognition Based Call-and-Come Service for Home Robots,” IEEE Transactions on Consumer Electronics, vol. 54, pp. 247-253, 2008.
    [5] K.C. Kwak and S.S. Kim, “Sound Source Localization with the Aid of Excitation Source Information in Home Robot Environments,” IEEE Transactions on Consumer Electronics, vol. 54, pp. 852-856, 2008.
    [6] SICK. Available: http://www.sick.com/group/EN/home/Pages/Homepage1.aspx
    [7] Faulhaber Group. Available: http://www.micromo.com/n128190/n.html
    [8] MD03. Available: http://www.futurashop.it/pdf_eng/7300-MD03.pdf
    [9] ROOTIS. Available: http://www.robotis.com/zbxe/intro
    [10] Altera Corporation. Available: http://www.robotis.com/zbxe/intro
    [11] S. H. Hsu, Design and Implementation of Motion Control System for Semi-Humanoid Robot Arm, Master Thesis, Department of Electrical Engineering, National Cheng Kung University, Taiwan, June 2007.
    [12] A. Doucet, J. de Freitas, K. Murphy, and S. Russel, “Rao-Blackwellized Particle Filtering for Dynamic Bayesian Networks,” in Proceedings of Conference on Uncertainty in Artificial Intelligence, Stanford, CA, 2000. pp. 176-183.
    [13] K. Murphy, “Bayesian Map Learning in Dynamic Environments,” in Proceedings of Conference on Neural Information Processing Systems, Denver, CO, 1999. pp. 1015-1021.
    [14] Klarer, P.R., Simple 2-D Navigation for Wheeled Vehicles, Technical report, Sandia Report SAND88-0540, Sandia National Laboratories, Albuquerque, NM, April. , 1988.
    [15] J. Crowley and P. Reignier, “Asynchronous Control of Rotation and Translation for a Robot Vehicle,” IEEE Transactions on Robotics and Autonomous Systems, vol. 10, pp. 243-251, 1992.
    [16] S. Thrun, W. Burgard, and D. Fox, “Robot perception,” in Probabilistic Robotics. Cambridge, MA: MIT Press, 2005, pp. 171–172.
    [17] G. Dissanayake, H. Durrant-Whyte and T. Bailey, “A Computationally Efficient Solution to the Simultaneous Localisation and Map Building (SLAM) problem,” in Proceedings of IEEE International Conference on Robotics and Automation, 2000, vol.2 pp. 1009-1014.
    [18] A. Eliazar and R. Parr, “DP-SLAM: Fast, Robust Simultaneous Localization and Mapping without Predetermined Landmarks,” in Proceedings of The International Joint Conference on Artificial Intelligence, 2003, pp. 1135-1142.
    [19] J. S. Gutmann and K. Konolige, “Incremental Mapping of Large Cyclic Environments,” in Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1999, pp. 318-325.
    [20] D. Hähnel, W. Burgard, D. Fox, and S. Thrun, “An Efficient FastSLAM Algorithm for Generating Maps of Large-Scale Cyclic Environments from Raw Laser Range Measurements,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, vol.1 pp. 206-211.
    [21] M. Montemerlo, S. T. D. Koller, and B. Wegbreit, “FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges,” in Proceedings of International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 2003, pp. 1151-1156.
    [22] M. Montemerlo, S. Thrun, D. Koller, and B.Wegbreit, “FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem,” in Proceedings of AAAI National Conference on Artificial Intelligence, Edmonton, AB, Canada, 2002, pp. 593-598.
    [23] S. Thrun, “A Probabilistic on-line Mapping Algorithm for Teams of Mobile Robots,” International Journal of Robotics Research, vol. 20, no. 5, pp. 335–363, 2001.
    [24] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters,” IEEE Transactions on Robotics, vol. 23, pp. 34-46, 2007.
    [25] A. Doucet, N. de Freitas, and N. Gordan, Eds., Sequential Monte-Carlo Methods in Practice. New York: Springer-Verlag, 2001.
    [26] S. Thrun, D. Fox, W. Burgardz, and F. Dellaert, “Robust Monte Carlo Localization for Mobile Robots,” Artificial Intelligence, vol. 128, pp. 99-141, 2001.
    [27] D. Fox, “Adapting the Sample Size in Particle Filters through KLD-sampling,” International Journal of Robotics Research, vol. 22, p. 985, 2003.
    [28] N. Nilsson, Problem-solving methods in artificial intelligence: McGraw-Hill Pub. Co., 1971.
    [29] M. Javier and L. Montano, “Nearness Diagram (ND) Navigation: Collision Avoidance in Troublesome Scenarios,” IEEE Transactions on Robotics and Automation, vol. 20, pp. 45-59, 2004.
    [30] N. Bellotto and H. Huosheng, “Multisensor-Based Human Detection and Tracking for Mobile Service Robots,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, pp. 167-181, 2009.

    下載圖示 校內:2015-08-17公開
    校外:2015-08-17公開
    QR CODE