簡易檢索 / 詳目顯示

研究生: 陳財生
Cheng, Chi-sheng
論文名稱: 含剛性絕緣線異質物之壓電裂紋體解析
Analysis of Cracked Piezoelectric Materials Embedded with a Dielectric Rigid Line
指導教授: 宋見春
none
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 101
中文關鍵詞: 反平面剛性絕緣線異質物壓電材料
外文關鍵詞: anti-plane, piezoelectric material, dielectric rigid line
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研究無窮域壓電材料,內含一剛性絕緣線異質物與一裂紋,受到反平面應力及平面電位移作用下應力場和電位移場問題。此問題之探討,首先引用廣義點壓電螺旋差排作用之基本解,將分析之問題轉化為一連續廣義壓電螺旋差排密度作用於裂紋面上,從而建立了一組奇異積分方程式。其次經由數值方法求得此廣義壓電螺旋差排密度之數值解,由廣義差壓電螺旋排密度之數值解進一步求得其應力場的全場解和裂紋尖端處的應力與電位移強度因子。文中針對剛性絕緣線異質物與裂紋中心距離和裂紋傾角等參數變化對應力場和強度因子之影響進行了分析。

    In this thesis, the interaction of the stress and electric displacement field between a rigid dielectric line and a crack, both embedded in an infinite piezoelectric medium is analyzed under remote anti-plane stress and in-plane electric displacement fields. Based on the Green’s function for a piezoelectric screw dislocation, a system of singular integral equations for the unknown piezoelectric screw dislocation densities defined on the crack faces is derived. Numerical method is then used to calculate the solutions to the system of equations. With the obtained piezoelectric screw dislocation density, the full field of stress field and the intensity factors are further computed and stress field contours are plotted. The influence of the geometry position between the crack and the rigid dielectric line on the full stress field is discussed.

    目錄 摘要------------I Abstract--------II 誌謝------------III 目錄------------IV 表目錄----------VI 圖目錄----------VII 第一章 緒論----1 1-1 前言--------------------------------------------1 1-2 文獻回顧----------------------------------------2 1-3 本文綱要----------------------------------------3 第二章 基本公式----------------------------------------5 2-1 位移複數函數與電位複數函數----------------------5 2-2 基本解------------------------------------------9 2-2-1 無窮遠處受到反平面應力場及平面電位移場之基本解--9 2-2-2 受到廣義點壓電螺旋差排作用之基本解--------------15 2-3 平滑曲線之曳引力--------------------------------19 第三章 問題推演----------------------------------------21 3-1 奇異積分方程組----------------------------------22 3-2 應力強度因子------------------------------------26 第四章 數值方法----------------------------------------28 4-1 奇異積分方程式組之正規化------------------------28 4-2 正規奇異積分方程式組之離散化--------------------30 第五章 結果與討論--------------------------------------34 5-1 應力場之探討------------------------------------38 5-1-1 x軸上裂紋之應力場探討---------------------------38 5-1-2 y軸上裂紋之應力場探討---------------------------49 5-1-3 XX=0.03m,YY=0.03m上裂紋之應力場探討-------------60 5-1-4 y軸上水平裂紋之應力場探討-----------------------71 5-1-5 x軸上水平裂紋之應力場探討----------------------75 5-2 裂紋尖端之強度因子探討--------------------------77 5-2-1 裂紋傾角變化之探討------------------------------77 5-2-2 x軸上裂紋尖端水平距離 c 變化之探討-------------80 5-2-3 y軸上裂紋尖端垂直距離d變化之探討---------------83 第六章 結論--------------------------------------------86 參考文獻------------------------------------------------88 附錄A 數值方法----------------------------------------89 附錄B 剛性絕緣線異質物上下介面之應力值表--------------95 自述----------------------------------------------------101

    [1].Cheng, B.J., Shu, D.W., Xiao, Z.M., Electro-elastic interaction between a piezoelectric screw dislocation and collinear rigid lines, International Journal of Engineering Science, Vol. 44, 422-435, 2006.
    [2].Gerasoulis, A., The use of piecewise quadratic polynomials for the solution of singular integral equations of Cauchy type. Comp. & Maths. with Appls., Vol. 8, No. 1, 15-22, 1982.
    [3].Muskhelishvili, N.I., Some basic problems of mathematical theory of elasticity, Noordhoff, Groningen, The Netherlands, 1963.
    [4].Meguid, S.A., Zhong, Z.,On the elliptical inhomogeneity problem in piezoelectric materials under antiplane shear and inplane electric field, International Journal of Engineering of Science, Vol. 36, 329-344, 1998.
    [5].Meguid, S.A., Deng, W., Electro-elastic interaction between a screw dislocation and an elliptical inhomogeneity in piezoelectric materials, International Journal of Solids and Structures, Vol. 35, 1467-1482, 1998.
    [6].Pak, Y.E., Crack extension force in a piezoelectric material, Journal of Applied Mechanics, Vol. 57, 647-653, 1990.
    [7].Pak, Y.E., Force on a piezoelectric screw dislocation, ASME Journal of Applied Mechanics, Vol. 57, 863-869, 1990.
    [8].Pak, Y.E., Circular inclusion problem in antiplane piezoelectricity, International Journal of Solids and Structures, Vol. 29, 2403-2419, 1992.
    [9].Shi, Weichen, Rigid line inclusions under anti-plane deformation and in plane electric field in piezoelectric materials, Egineering Fracture Mechanics, Vol. 56, No. 2, 265-274, 1997.
    [10].Sung, J.C., Liou, J.Y., An internal crack in a half-plane solid with clamped boundary, Computer Method in Applied Mechanics and Engineering, Vol. 121, 361-372, 1995.
    [11].徐仲毅, 半平面壓電裂紋材料之數值分析, 2006.

    下載圖示 校內:2010-08-13公開
    校外:2010-08-13公開
    QR CODE