| 研究生: |
李冠緯 Lee, Kwan-Wei |
|---|---|
| 論文名稱: |
應用於WiMAX無線通訊系統平面陣列天線之研製 Design and Implementation of Planar Array Antennas Applied to WiMAX Wireless Communication System |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 陣列天線 、微波存取全球互通 |
| 外文關鍵詞: | WiMAX, Array Antenna |
| 相關次數: | 點閱:78 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文主要為探討及設計製作應用在WiMAX無線通訊系統中戶外型固定式用戶端設備之點對點陣列天線。主要內容包含不同類型平面陣列天線(三維微帶線饋入之平面微帶陣列天線、H形槽孔耦合饋入之平面微帶陣列天線及印刷式偶極陣列天線)之模擬與討論、2 x 2、2 x 3平面微帶陣列天線的設計、模擬與實際量測。其中提出2 x 3平面微帶陣列天線的構想是為了提升天線的阻抗頻寬、增益及降低旁波束位準,文中也針對影響旁波束位準的因素做一些討論。實作結果為:2 x 2陣列的阻抗頻寬為160 MHz (3.35 GHz~3.51 GHz,VSWR < 1.5,4.6 %,中心頻率以3.5 GHz定義),增益為14.56 dBi,旁波束位準為 -14.69 dB;2 x 3陣列的阻抗頻寬為620 MHz (3.14 GHz~3.76 GHz,VSWR < 1.5,17.7 %),增益為16.23 dBi,旁波束位準為 -18.83 dB。因此,2 x 3陣列比2 x 2陣列有更佳的電氣特性且能完全符合WiMAX無線通訊系統規格的需求。
Abstract
The main objective of this study is to discuss and implement PTP (Point-to-Point) array antennas applied to fixed outdoor CPE (Customer Premises Equipment) of WiMAX Wireless Communication System. The main studies include simulation and discussion of different kinds of planar array antennas (three-dimensional microstrip transition fed planar microstrip array antenna, H-shape aperture-coupled planar microstrip array antenna and printed dipole array antenna), design, simulation and practical measurement of 2 x 2, 2 x 3 planar microstrip array antennas. In order to enhance impedance bandwidth, gain and reduce the SLL (Sidelobe Level) of antenna, we propose the design of 2 x 3 planar microstrip array antennas. The measurement results are shown that: the 2 x 2 array has 160 MHz impedance bandwidth (3.35 GHz~3.51 GHz, VSWR < 1.5, 4.6 % centered at 3.5 GHz) , the gain is 14.56 dBi, the SLL is -14.69 dB; the 2 x 3 array has 620 MHz impedance bandwidth (3.14 GHz~3.76 GHz, VSWR < 1.5, 17.7 %) , the gain is 16.23 dBi, the SLL is -18.83 dB. According to these results, 2 x 3 array antenna shows much promising electrical properties and fully meet the requirement of WiMAX wireless communication system standards in comparison with 2 x 2 array antenna.
[1] http://www.dgt.gov.tw/chinese/Public-comments/15.2/pc-094/WiMAX.pdf
[2] 賴智揚, “智慧型天線於寬頻分碼多重進接存取系統之應用, ” 中原大學電子工程研究所碩士論文, 2001.
[3] C. A. Balanis, “Antenna Theory, ” Chapter 14. pp. 726-749.
[4] Keith R. Carver and James W. Mink, ”Microstrip Antenna Technology, ” IEEE Trans. Antennas Propagat., Vol. 29, No. 1, pp.11-12, January 1981.
[5] D. M. Pozar, “A Reciprocity Method of Analysis for Printed Slot and Slot-Coupled Microstrip Antennas, ” IEEE Trans. Antennas Propagat., Vol. AP-34, pp.1439-1446, Dec. 1986.
[6] M. H. Ho, K. A. Michalslu and K. Chang, “Waveguide Excited Microstrip Patch Antenna--Theory and Experiment, ” IEEE Trans. Antennas Propagat., Vol. 42, No. 8, pp.1114-1125, Aug. 1994.
[7] C. Wu et al., “Accurate Characterisation of Planar Printed Antennas Using Finite-Difference Time-Domain Method, ” IEEE Trans. Antennas Propagat., Vo1. 45, No.3, pp.526-534, May 1992.
[8] C. A. Balanis, “Antenna Theory, ” Chapter 14. pp.736-740.
[9] M. A. Weiss, “Microstrip Antennas for Millimeter Waves, ” IEEE Trans. Antennas Propagat., Vol. AP-29, pp.171-174, Jan. 1981.
[10] 翁金輅, “平面天線理論與設計, ” 國立中山大學電機工程學系, 2001年9月.
[11] D. M. Pozar, “Input Impedance and Mutual Coupling of Rectangular Microstrip Antennas, ” IEEE Trans. Antennas Propagat., Vol. AP-30, pp.1191-1196, Nov. 1982.
[12] D. M. Pozar, “Considerations for Millimeter Wave Printed Antennas, ’’ IEEE Trans. Antennas Propagat., Vol. AP-31, pp. 740-747, Sept. 1983.
[13] W. L. Stutzman and G. A. Thiele, “Antenna Theory and Design 2nd ed., “ John Wiley, New York, Chapter 2. 1998.
[14] W. Wilkinson, “A Class of Printed Circuit Antennas, ” IEEE Antennas Propagation Symp. Fig, 1974, pp.270-274.
[15] Jhin-Fang Huang, Mao-Hsiu Hsu and Jia-Wei Liang, “Wideband Printed and Double-Sided Dipole Pair Antennas with a Parallel Reflector, ” 2005 IEEE International Symp. on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings, Vol. 2, pp.1635-1638, 8-12 Aug. 2005.
[16] B. G. Duffley, G. A. Morin, M. Mikavica and Y. M. M. Antar, “A Wide-Band Printed Double-Sided Dipole Array, ” IEEE Trans. Antennas Propagat., Vol. 52, No. 2, pp.628-631, February 2004.
[17] C. A. Balanis, “Antenna Theory, ” Chapter 6. pp.250-255.
[18] C. A. Balanis, “Antenna Theory, ” Chapter 6. pp.309-314.
[19] D. M. Pozar and Barry Kaufman, ”Design Considerations for Low Sidelobe Microstrip Arrays, ” IEEE Trans. Antennas Propagat., Vol. 38, No. 8, pp.1176-1185, Aug. 1990.
[20] Ely Levine, Gabi Malamud, Shmuel Shtrikman and David Treves, ”A Study of Microstrip Array Antennas with the Feed Network, ” IEEE Trans. Antennas Propagat., Vol. 37, No. 4, pp.426-434, April 1989.
[21] M. Rammal, D. Eclercy, A. Reineix, and B. Jecko, “Study of Mutual Coupling Effect on Radiated Patterns of Antenna Arrays, ” IEE Proc, Microwave, Antennas and Propagat., Vol. 144, pp.389-391, 1997.
[22] J. Huang, “The Finite Ground Plane Effect on the Microstrip Antenna Radiation Patterns, ” IEEE Trans. Antennas Propagat., Vol. AP-37, pp.649-653, July 1983.
[23] S. D. Targonski, D.M. Pozar and R.B. Waterhouse, “Aperture Coupled Microstrip Antennas Using Reflector Elements for Wireless Communications, ” IEEE-APS Conference Antennas and Propagat. for Wireless Communications, 1-4, pp.163-166, Nov. 1998.
[24] J. Huang, “Low Cross-Pol Linearly Polarized Microstrip Array, ” Antennas and Propagation Society International Symposium, Vol. 4, 7-11, pp.1750-1753, May 1990.
[25] P. S. Hall and C. M. Hall, ”Coplanar Corporate Feed Effects in Microstrip Patch Array Design, ” IEE Proc, Microwave, Antennas and Propagat., Vol. 135, No. 3, pp.180-186, Jun. 1988.