簡易檢索 / 詳目顯示

研究生: 蘇育德
Su, Yu-Te
論文名稱: 人形機器人之視覺與控制系統之發展與實現
Development and Implementation of Visual and Control Systems for Humanoid Robot
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 100
中文關鍵詞: 人形機器人
外文關鍵詞: humanoid robot
相關次數: 點閱:68下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要發展以FIRA規則為標準之人形機器人足球競賽系統,其中包括人形機器人的硬體架構設計、視覺伺服系統與控制策略系統的研發、及人形機器人運動模式的設計與實現。整個人形機器人系統為一視覺回授控制系統,其中裝置於機器人頭部的視覺系統擷取場地上的畫面,並將影像資訊傳送至影像處理中心,再經由影像分析辨識來獲得場上環境的動態資訊。而此影像資訊再經由特定編碼後,隨即傳入控制策略中心以判斷場上機器人與球的相對狀況。最後,再依此狀況來決定機器人的策略控制與行為模式,並將控制策略判斷的結果傳送至動作模式資料庫以達成機器人之運動控制。本論文首先提出所設計之人形機器人足球競賽系統,並介紹其硬體架構,其次我們將詳述影像處理之流程。接著,我們提出控制策略來賦予人形機器人所需產生的行為模式與動作。最後以實驗來展現所設計之人形機器人足球系統的效益與適用性。

    This thesis is mainly to develop a robot soccer system to conform Humanoid Robot World Cup Soccer Tournament (HuroSot) of FIRA. The humanoid robot soccer system, which can be considered as a visual feedback system, includes the design and implementation of the hardware architecture, visual servo system, control strategy system, and the motion patterns. The image of the field is captured via the camera mounted above the robot. The information of image data are transmitted to the image processing center and then analyzed to obtain the dynamic environmental information of the field. The control strategy system will choose the specific control strategy and behavior according to the information encoded by the visual system. Accordingly, the robot will execute the movement with the choice of the motion patterns database. This thesis starts with addressing the structure of the humanoid robot soccer system and then details the flow of the image processing system. Furthermore, we propose control strategies to assign the behavior decision of the soccer robot. Finally, the experiments of a humanoid soccer robot are performed to verify the benefit and the feasibility of the developed schemes.

    Abstract Ⅰ Acknowledgment Ⅲ Contents Ⅳ List of Figures Ⅶ List of Tables Ⅹ Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2. Overview of the Humanoid Robot Soccer System 4 2.1 Introduction 4 2.2 Overview of the Humanoid Size Robot League 6 2.2.1 The Field of Play and The Roles for Penalty Kick 6 2.2.2 The Humanoid Robot Restrictions 7 2.3 Integration and the Signal Flow of Humanoid Robot System 8 2.4 Hardware and Software Specification of Humanoid Robot 9 2.4.1 The Mechanical Design 9 2.4.2 The Actuator 12 2.4.3 The Power System 13 2.4.4 The Visual System 14 2.4.5 The Control Strategy System 17 2.4.6 The Develop Software 18 2.5 Hardware Configuration of the Humanoid Robot 20 2.6 Summary 22 Chapter 3. Vision System 23 3.1 Introduction 23 3.2 The Method of the Image Processing 25 3.2.1 YUV Color Formation 26 3.2.2 The Advanced Labeling Algorithm for Object Recognition 29 3.3 The Visual System of the Offence Mode 35 3.3.1 Architecture 37 3.3.2 The Procedure for Image Processing in Offence Mode 39 3.3.3 The Encoding Method of Image Information 41 3.3.4 Result 41 3.4 The Visual System of the Defense Mode 41 3.4.1 Architecture 41 3.4.2 The Procedure for Image Processing in Defense Mode 44 3.4.3 The Encoding Method of Image Information 45 3.4.4 Result 47 3.5 Letters Recognition 48 3.5.1 The Environment Setting 48 3.5.2 Classify the Feature of the Letters 48 3.5.3 The Algorithm of Letters Recognition 49 3.5.4 Result 51 Chapter 4. Control Strategy System 53 4.1 Introduction 53 4.2 The Control Strategy System for Offence Mode 55 4.2.1 Decoding Method 55 4.2.2 Fuzzy Based 2D Tracking Motors 55 4.2.3 Control Strategy Center 61 4.2.4 Behavior Decision and Motion Pattern of Offence Mode 68 4.3 The Control Strategy for Defense Mode 74 4.3.1 Decoding Method 74 4.3.2 Control Strategy Center 75 4.3.3 Behavior Decision and Motion Pattern of Defense Mode 78 4.4 The Control Strategy of Letters Recognition 79 4.4.1 Receiving Data Form 80 4.4.2 Gesture Generation 80 4.5 Summery 82 Chapter 5.Experimental Results 83 5.1 Introduction 83 5.2 The Operation Interface 84 5.3 Experiment for Offense Mode 87 5.4 Experiment for Defense Mode 89 5.5 Experiment for Letters Recognition 91 Chapter 6. Conclusion and Future Works 95 6.1 Conclusion 95 6.2 Future Works 96 References 97 Biography 100

    [1] W.M. Shen, J. Adibi, and R. Adobbati, “Autonomous soccer robots,” Robot Soccer World I/RoboCup-97., pp. 295-304, 1998.
    [2] Y. Yagi, Y. Nishizawa, and M. Yachida, “Map-based navigation for a mobile robot with omnidirectional image sensor COPIS”, IEEE Trans. Robotics Automat., vol. 11, Oct., pp. 634–648, 1995.
    [3] C. Pegard and E.M. Mouaddib “A mobile robot using a panoramic view,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 89-94, 1996.
    [4] D.Kim, S.-J. Seo, and G. T. Park, “Zero-moment point trajectory modeling of a biped walking robot using an adaptive neuro-fuzzy system,” IEEE Proc.-Control Theory and Applications, vol.152, no 4, pp. 411-426, July 2005.
    [5] P. Sardain and G. Bessonnet, “Forces acting on a biped robot. Center of pressure-zero moment point,” IEEE Trans. Systems, Man and Cybernetics, Part A, vol. 34, No 5, pp. 630-637, Sep. 2004.
    [6] P. Sardain and G. Bessonnet, “Zero moment point-measurements from a human walker wearing robot feet as shoes,” IEEE Trans. Systems, Man and Cybernetics, part a, vol. 34, no. 5, pp. 638-648, Sep. 2004.
    [7] D. Feng and J.D. Fuller, “Nodal, uniform, or zonal pricing: distribution of economic surplus,” IEEE Trans. Power Systems, vol. 20, no. 2, pp. 875-882, May 2005.
    [8] N. Yao and K. K. Ma, “Adaptive rood pattern search for fast block-matching motion estimation,” IEEE Trans. Image Proc., vol. 11, no. 12, pp. 1442-1449, Dec. 2002.
    [9] FIRA, http://www.fira.net/
    [10] K. Kuwayama, S. Kato; H. Seki, T. Yamakita, and H. Itoh, “Motion control for humanoid robots based on the concept learning,” Micromechatronics and Human Science, in Proc. Int. Symposium, pp. 259-263, 2003.
    [11] S. Iida, M. Kanoh, S. Kato, and H. Itoh, “Reinforcement learning for motion control of humanoid robots,” in Proc. 2004 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 3153-3157, 2004.
    [12] K. Kuwayama, S. Kato, T. Kunitachi, and H. Itoh, “Motion control for humanoid robots based on the motion phase decision tree learning,” Micro-Nanomechatronics and Human Science, and Micro-Nanomechatronics for Information-Based Society, in Proc.4th of Int. Sym., pp. 157-162, 2004.
    [13] J.A. Adams and H. Kaymaz-Keskinpala, “Analysis of perceived workload when using a PDA for mobile robot teleoperation,” in Proc. 4th IEEE Int. Conf. Robotics and Automation, vol.4, pp. 4128-4133, 2004.
    [14] S. Shirata, A. Konno, and M. Uchiyama, “Design and development of a light-weight biped humanoid robot saika-4,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS 2004), vol.1, pp. 148-153, 2004.
    [15] T. M. Chen, Y. Z. Hou, C. Y. Hu, S. C. Mac, and M. Wang, “Development of PDA with global navigation capability,” in Proc. Int. Conf. ,Consumer Electronics, pp. 198-199, 2002.
    [16] I. W. Park, J. Y. Kim, S. W. Park, and J. H. Oh, “Development of humanoid robot platform KHR-2,” in Proc. 4th IEEE/RAS Int. Conf. Humanoid Robots, vol.1, pp. 292-310, 2004.
    [17] T. Mukai and N. Ohnishi, “Recovery of shape and scale of an object using a CCD camera and an acceleration-gyro sensor,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol.1, pp. 70-76, 1999.
    [18] H. H. Lund, “Modern artificial intelligence for human-robot interaction,” in Proc. IEEE, Issue 11, pp. 1821–1838, 2004.
    [19] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, and T. Isozumi, “Design of prototype humanoid robotics platform for HRP,” in Proc. IEEE/RSJ. Conf. Intelligent Robots and System, vol.3, pp. 2431-2436, 2002.
    [20] R. C. Gonzales and R. E. Woods. Digital Image Processing. Addison-Wesley, 1992.
    [21] E. Ardizzone, A. Chella, and R. Pirrone, “A neural based approach to image segmentation,” in Proc. Int. Conf. Artificial Neural Networks, pp. 1152-1156, London, 1994.
    [22] E. Ardizzone, A. Chella, and R. Rizzo, “Color Image Segmentation Based on a Neural Gas Network,” Proceedings of the International Conference on Artificial Neural Networks, pp. 1161-1164, London, 1994.
    [23] 楊武智編著,影像處理與辨認 ,全華科技出版社,1994。
    [24] G. Klancar, M. Kristan and R. Karba, “Wide-angle camera distortions and non-uniform illumination in mobile robot tracking,” Robotics and Autonomous Systems, vol. 46, pp. 125-133, February 2004.
    [25] G. Klanˇcar, O. Orqueda, D. Matko, and R. Karba, “Robust and efficient vision system for mobile robots control-application to soccer robots,” Electrochemical Review ,68 (5) (2001) 306–312.
    [26] J. Perš, and S. Kovaˇciˇc, “Nonparametric, Model-based radial lens distortion correction using titled camera assumption,” in: H. Wildenauer, W. Kropatsch (Eds.), Proceedings of the Computer Vision Winter Workshop 2002, Bad Aussee, Austria, pp. 286–295, February 2002.
    [27] Z. Zhu, S. Yang, G. Xu, X. Lin, and D. Shi, “Fast road classification and orientation estimation using omni-view images and neural networks,” IEEE Trans. Image Proc., vol. 7, pp. 1182-1197, Aug. 1998.
    [28] H. Ishiguro, M. Yamamoto, and S. Tsuji, “Omni-directional stereo,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, pp. 257-262, Feb. 1992.
    [29] Emanuele Menegatti, Takeshi Maeda, and Hiroshi Ishiguro “Image-based memory for robot navigation using properties of omnidirectional images,” Robotics and Autonomous Systems, vol. 47, Issue. 4, pp. 251-267, July 31, 2004.
    [30] Emanuele Menegatti, Mauro Zoccarato, Enrico Pagello and Hiroshi Ishiguro “Image-based Monte Carlo localisation with omnidirectional images,” Robotics and Autonomous Systems, vol. 48, issue. 1, pp. 17-30, Aug. 31, 2004.
    [31] W. I. Grosky and L. A. Tamburino, “A unified approach to the linear camera calibration problem,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, pp. 663-671, July 1990.
    [32] K.-I. Kanatani, “3D Euclidean versus 2D non-Euclidean: two approaches to 3D recovery from images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, pp. 329-332, Mar.
    [33] L. A. Zadeh, “Fuzzy Algorithm,” Inform. Control, vol. 12, pp. 94-102, 1968.
    [34] L. A. Zadeh, “Fuzzy Sets,” Inform. Control, vol. 8, pp. 338-353, 1965.
    [35] T. Furuta,T. Tawara,Y. Okumura,M. Shimizu, and K. Tomiyama, “Design and construction of a series of compact humanoid robots and development of biped walk control strategies,” Robotics and Autonomous Systems, vol. 37, issue. 2-3, pp. 81-100, Nov. 30, 2001.
    [36] O. Ibidapo-Obe,A. Alonge,B. Badiru, and B. Adedeji, “On active controls for a biped mechanism,” Applied Mathematics and Computation, vol. 69, issue. 2-3, pp. 159-183, May, 1995.
    [37] R. Sellaouti and F.B Ouezdou, “Design and control of a 3DOFs parallel actuated mechanism for biped application,” Mechanism and Machine Theory , vol. 40, issue. 12, pp. 1367-1393, 2005.
    [38] Hirukawa, Hirohisa, Kanehiro, Fumio, Kaneko, Kenji; Kajita, Shuuji, Fujiwara, Kiyoshi, Kawai, Yoshihiro, et. al, “Humanoid robotics platforms developed in HRP,” Robotics and Autonomous Systems, vol. 48, issue. 4, Oct. 31, pp. 165-175, 2004.

    下載圖示 校內:2012-07-13公開
    校外:2016-07-13公開
    QR CODE