簡易檢索 / 詳目顯示

研究生: 歐陽裕龍
Ou-Yang, Yu-Long
論文名稱: 銅膜化學機械研磨-碎形量測及砥粒刮蝕黏附效應對鈍化層生成與移除影響之理論建立與實驗驗證
Theoretical Analysis for the Passivation Reactions on Cu-film Influenced by Fractal Measurement,Abration and Adhesion Effects in Chemical Mechanical Polishing
指導教授: 林仁輝
Lin, Ren-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 250
中文關鍵詞: 黏附碎形刮蝕微結構化學機械研磨
外文關鍵詞: fractal, CMP, abration, adhesion
相關次數: 點閱:71下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文所建立之銅晶圓CMP研磨機制模型,可分為物理、機械兩部份。物理部分探討本文所獨創的等向性碎形粗糙度理論配合不均勻非碎形處理技巧,求出比高斯分布更接近真實之研磨墊的等向性碎形粗糙峰分布,並進而利用相同原理,說明碎形理論在微小結構量測、研磨後之晶圓表面形貌檢測甚至地形地貌方面的應用。
    機械部份主要探討CMP研磨過程流場分布與晶圓、粉體與研磨墊三者之接觸情形。於流場的分析,本文建立含微顆粒及粗度效應之雷諾方程式,來探討CMP混合潤滑之流場,藉由理論數值分析計算得到流場之液動壓力、液膜厚度及流場分佈。固體接觸部分則包含研磨墊粗度峰及研磨墊底材之彈性變形,以及晶圓研磨面與砥粒接觸之彈塑性變形分析。理論部分,本文中使用了等向性碎形粗度分佈,估算晶圓研磨墊間之真實接觸壓力、接觸面積半徑與變形量,再由力之作用粒與反作用粒定律,求晶圓研磨面與砥粒間之真實接觸壓力、接觸面積半徑與晶圓變形量。最後用黏附理論修正晶圓砥粒間接觸面積半徑,再代入本文所推導的的梯形面積法之砥粒刮蝕機械移除率理論與一系列有關鈍化層部分的研究與實驗,驗證理論之正確性。
    實驗設備部分,分別使用了本奈米磨潤實驗室的毫微米(精度達100 )三維粗度儀、次奈米掃描式探針顯微鏡(SPM,精度達1 )對研磨墊及晶圓面做表面形貌分析、奈米微硬度實驗機(精度達10 )做鈍化層厚度與硬度、楊氏模數關係之微硬度實驗。在SPM圖像的解析部分,我們亦使用實驗設備得到晶圓研磨後的奈米刮痕與粗糙度參數,並與數值解析結果比較,驗證理論推導之正確性。最後,藉由控制自動平衡點的位置,提供非本論文實驗中,其他CMP研磨參數:研磨墊、研磨液、砥粒粒徑與背壓力最佳化設計之方向。
    過去實驗室研究過的題目包括:CMP流場壓力與速度分布理論之建立、對心式與非對心式CMP機台設計與性能測試、研磨墊花樣對CMP的影響、銅膜鈍化層化學反應生成速率及濃度分布理論之建立、砥粒旋轉耦合效應理論之建立、砥粒聚集後的平均二次粒徑理論之建立、研磨液位移能理論之建立,並分別在不同晶圓、研磨墊轉速、下壓力、研磨墊花樣、二次粒徑、活化能、研磨時間的研磨參數下,討論對銅膜CMP化學生成速率的影響。
    本論文主要的貢獻在於:推導出等向性碎形粗糙度分佈理論與具黏附效應之砥粒刮蝕機械移除率理論、提出砥粒機械移除率與銅膜鈍化層化學生成速率達自動平衡的示意圖、用實驗找出自動平衡點位置並求出理論相關分析數據,並用實驗驗證理論之正確性、由理論數值結果,說明自動平衡點在CMP裡扮演的角色,最後並由理論推導各研磨參數對平均移除率、不均勻度、平坦度及鈍化層殘留厚度的影響。

    This dissertation aims to study the removal rate of the copper Chemical mechanical Polishing (CMP) from the viewpoint of chemical reaction in chief. The establishment of the CMP model is divided into the mechanical part、physical part and the chemical part. In mechanical part, the contact models among wafer and abrasive and polish pad are considered, they include the elastic deformation arising at asperities and substrate of polishing pad and the elastic-plastic deformation at the interface between wafer and abrasive during CMP. We also estimate the real contact pressure and the ratio of solid contact area of abrasive and asperity of pad at the same time. We develop the Reynolds equation considered the effect of micro-particle and surface roughness in the analysis of flow field between wafer and pad. We also estimate the distributions of the hydrodynamic pressure and the velocity of the fluid field by numerical analysis. In physical part, we considered the effect of abrasive aggregation of the slurry in the result of polishing to estimate the real contact pressure between wafer and aggregated abrasives with the real contact area. In the study of the chemical part, the rate constant of chemical reaction that is changed by the mechanical stresses from the viewpoint of tribochemistry is concerned. The concentration mass transfer equation was applied in the analysis of the reactant’s concentration of slurry during the CMP by numerical analysis.
    In this study we considered the effect of the abrasive aggregation of the slurry in(1)the analysis of flow field between wafer and pad;(2)the contact situation between wafer and abrasives;(3)the surface roughness and contours after polishing. With the assumption of chemical reaction equivalent to the removal rate of copper CMP, we can examine the correct of theoretical model by the removal rate and surface roughness parameters from CMP experiment and wafer surface contour experiment.
    Several parameters that were considered in this model include the attack angle of the wafer and the limiting strength of the copper in the slurry. They must be given in the theoretical analysis. The theoretical results obtained from the changes of these parameters are compared with the experimental removal rates. After we determined these parameters, the removal rate obtained from the theoretical analysis with the value of average secondary particle size estimated by the theory of abrasive aggregation can be compared with the results of experiment to prove the accuracy of this model. With the theoretical analysis before polishing, we can thus forecast the removal rate and non-uniformity after CMP.

    摘要...................................................... Ⅰ 英文摘要.................................................. Ⅲ 誌謝...................................................... Ⅴ 目錄...................................................... Ⅵ 表目錄.................................................... Ⅸ 圖目錄.................................................... Ⅹ 符號說明................................................. ⅩⅤ 第一章 緒論................................................1 1.1前言.................................................1 1.2文獻回顧.............................................2 1.3研究目的及內容.......................................9 第二章 化學機械研磨理論模型之建立.......................... 12 2.1 物理部分-等向性碎形理論之建立........................12 2.1.1簡介.......................................12 2.1.2 碎形理論....................................13 2.1.3 W-M方程式..................................14 2.1.4 W-M方程式的自相關性與能量頻譜法................16 2.1.5 W-M方程式的自變異性與結構方程式................17 2.1.6 非等向性碎形等效成向性碎形之理論建立.............18 2.1.7 不均勻非碎形處理技巧.............................20 2.1.8 碎形粗糙峰高度機率分布...........................22 2.2 機械部分-CMP混合潤滑理論之建立.....................24 2.2.1 磨潤簡介.........................................24 2.2.2含微顆粒行為之雷諾方程式.........................26 2.2.3 微極流體參數之物理意義...........................33 2.2.4 放大函數.........................................34 2.2.5 含粗糙度效應之平均流雷諾方程式...................36 2.3機械部分-研磨墊赫茲接觸彈塑性變形理論............... 43 2.3.1 簡介.............................................43 2.3.2 研磨墊粗度峰之平均接觸壓力..................... 43 2.3.3 研磨墊底材變形理論............................. 48 2.3.4 力平衡求最小水膜厚度............................ 54 2.4機械部分-晶圓、研磨粉體及研磨墊彈塑性接觸力學理論....55 2.4.1 研磨墊粗度峰真實接觸壓力....................... 55 2.4.2 研磨粉體真實接觸面積........................... 57 2.4.3研磨粉體真實接觸壓力........................... 61 2.5 機械部分-研磨面上砥粒刮蝕、黏附理論...................63 2.5.1 刮蝕與黏附現象與理論簡介.........................63 2.5.2砥粒刮蝕機械移除率...............................64 2.5.3 研磨面上之刮蝕頻率...............................69 2.5.4 砥粒刮蝕梯形面積法...............................70 2.5.5 研磨方向上單一砥粒平均移除高度...................72 2.5.6 砥粒有效接觸百分比...............................72 2.5.7砥粒刮蝕機械移除率理論...........................72 2.5.8 研磨面上砥粒黏附理論.............................73 2.5.9材料係數C之求法.................................75 2.5.10 自動平衡點示意圖................................79 第三章 實驗部份......................................... 102 3.1六吋晶圓化學機械研磨實驗............................103 3.2六吋銅膜晶圓研磨前後表面形貌分析實驗................108 3.3銅膜鈍化層硬度量測分析實驗.......................... 111 第四章 結果與討論...................................... 120 4.1 銅膜CMP之研磨參數...................................122 4.1.1 銅膜CMP之研磨參數及分析方法.................... 122 4.1.2銅膜CMP理論分析與研磨結果之比較................ 125 4.1.3影響平坦度的重要因素............................128 4.1.4由表面形貌量測微刮痕深度、刮痕寬度與粗糙度並驗證 理論之正確性....................................130 4.1.5 自動平衡點的理論分析與實驗結果................131 4.2 自動平衡點上理論分析結果與討論......................132 4.3其他CMP研磨條件最佳化方向....................140 4.4 CMP最佳化總結.....................................148 第五章 結論與未來研究的方向..............................241 5.1 結論................................................241 5.2未來研究的方向......................................242 參考文獻..................................................244 表目錄 表2.1 常見膠體系統碎形維數列表..........................80 表3.1 6吋晶圓製作run card........................... 113 表3.2 6吋矽晶圓基材規格..............................114 表3.3 6吋銅鍍膜晶圓之各層鍍膜材料及厚度............. 114 表3.4 研磨液組成配方.................................115 表3.5 CMP製程操作參數................................115 表4.1 不同砥粒初始粒徑、轉速、下壓力條件下,達自動平 衡點時的平均移除率MRR與不均勻度NU實驗值(研磨 時間60sec)....................................149 表4.2 不同砥粒初始粒徑、轉速、下壓力條件下,晶圓研磨 前後表面粗糙度參數實驗值(研磨時間60sec,三維粗 度儀量測, × ,晶圓中心處)...........149 表4.3 不同砥粒初始粒徑、轉速、下壓力條件下,晶圓研磨 前後表面粗糙度參數(研磨時間60sec,掃描式探針顯 微鏡SPM量測, × ,晶圓中心處) ...........150 表4.4 不同砥粒初始粒徑、轉速、下壓力條件下,CMP達自 動平衡點時鈍化層之機械性質(研磨時間60sec、攻 擊角0.001°) . ................................150 表4.5 CMP理論數值分析參數...........................151 圖目錄 圖2.1.1 頻譜轉換後的碎形分析 81 圖2.1.2 等向性研磨墊之碎形量測分析 81 圖2.1.3 橢圓形粗糙峰等效成圓形粗糙峰示意圖 82 圖2.1.4 垂直兩方向結構方程式的等效示意圖 82 圖2.1.5 單一碎形與多重碎碎形 83 圖2.1.6 研磨厚晶圓面上之不均勻之非碎形粗糙度 83 圖2.1.7 不均勻非碎形分區段處理的技巧 84 圖2.1.8 研磨墊粗糙度碎形模擬 84 圖2.1.9 研磨墊粗糙峰機率分布函數 85 圖2.2.1 微觀真實CMP示意圖 86 圖2.2.2 Stribeck圖 86 圖2.2.3 穩定運轉下IPEC/Westech Model 473M CMP Polisher CMP時晶圓與研磨墊幾何相對關係與座標示意圖(1) 87 圖2.2.4 穩定運轉下IPEC/Westech Model 473M CMP Polisher CMP時晶圓與研磨墊幾何相對關係與座標示意圖(2) 88 圖2.2.5 平均流模型的水膜厚度幾何圖形,h為名義上之水膜厚度、 為局部水膜厚度。 89 圖2.2.6 兩粗糙扇形元素示意圖 89 圖2.2.7 研磨墊之粗度花樣示意圖(a)縱向( );(b)等向( );(c)橫向( ) 90 圖2.3.1 研磨墊粗糙峰與晶圓彈性接觸示意圖AA為研磨墊巨體變形前粗糙度振幅平均高度BB為研磨墊巨體變形後粗糙度振幅平均高度 91 圖2.3.2 (a) 研磨墊粗度峰與定義z方向座標軸之示意圖,(b) CMP液動潤滑示意圖(液壓使研磨墊底材變形),(c) CMP混合潤滑示意圖(液壓及接觸壓使研磨墊底材變形) 92 圖2.3.3 (a) 研磨墊上格點A之扇形區域面積, (b) 說明格點A、B之相對位置不變,其中 (c) 卡氏直角座標軸示意圖, (d) 簡化均勻壓力區域的幾何形狀。 93 圖2.3.4 (a) 所考慮的點B(x ,y)落於分佈壓力區域外部,(b) 所考慮的點B(x ,y)落於分佈壓力區域內部, (c) 典型的直角三角形區域,其中 、 94 圖2.3.5 晶圓研磨墊間力平衡示意圖 95 圖2.4.1 研磨墊粗度峰、研磨面及研磨粉體之接觸情形,(a)研磨面完全與流體接觸,(b)研磨面部份與研磨墊粗度峰接觸,(c)研磨面部份與研磨墊粗度峰及研磨粉體接觸。 96 圖2.4.2 研磨粉體與研磨面之接觸情形示意圖(a)晶圓研磨面、研磨粉體及研磨墊粗度峰三者之接觸情形,(b)晶圓研磨面、研磨粉體接觸面放大示意圖。 97 圖2.4.3 研磨墊粗糙峰與晶圓彈性接觸示意圖AA為研磨墊巨體變形前粗糙度振幅平均高度BB為研磨墊巨體變形後粗糙度振幅平均高度 98 圖2.4.4 研磨粉體與晶圓彈塑性接觸區域局部放大示意圖,ha為接觸間隙,cc線段為粉體分佈平均值 98 圖2.5.1 黏附效應造成接觸面積增加 99 圖2.5.2 研磨墊上砥粒刮蝕移除原理圖 99 圖2.5.3 砥粒晶圓間梯形塑性移除面積的幾何關係 100 圖2.5.4 砥粒晶圓間變形量與投影接觸面積半徑的幾何關係 100 圖2.5.5 銅膜鈍化層化學生成速率曲線、砥粒刮蝕機械移除率曲線與自動平衡點的關係 101 圖3.1.1 (a)6吋晶圓之M-GAUGE量測點位置,(b)6吋晶圓之ET-4000量測點位置(包含M-GAUGE量測點位置) 116 圖3.1.2 超微細表面形貌暨膜厚段差測定儀 117 圖3.2.1 超微細表面形貌暨膜厚段差測定儀 118 圖3.2.2 掃描試探針顯微鏡(SPM) 118 圖3.3.1 奈米微硬度測試機(Nano Test) 119 圖4.1.1 銅膜CMP徑向移除率實驗數據 153 圖4.1.2 壓痕深度與銅膜鈍化層複合硬度之實驗數據 153 圖4.1.3 壓痕深度與銅膜鈍化層複合楊式模數之實驗數據 154 圖4.1.4 銅膜表面鈍化層厚度與鈍化層複合硬度關係之實驗數據 154 圖4.1.5 銅膜表面鈍化層複合厚度與複合楊式模數關係之實驗數據 155 圖4.1.6 銅膜表面鈍化層複合硬度與複合楊式模數關係之實驗數據 155 圖4.1.7 力平衡下攻擊角與水膜厚度的關係 156 圖4.1.8~圖4.1.25 攻擊角與鈍化層硬度對機械移除率的影響 156~165 圖4.1.26~圖4.1.28 鈍化層化學生成速率與砥粒刮蝕機械移除率的自動平衡點 165~166 圖4.1.29~圖4.1.31 平均移除率與不均勻度的理論與實驗數據 167~168 圖4.1.32(a)~圖4.1.32(f) 銅膜晶圓研磨前,掃描式探針顯微鏡(SPM)掃描晶圓中心處(r=0)之刮痕深度與刮痕寬度 168~171 圖4.1.33(a)~圖4.1.33(g) 銅膜晶圓研磨前,三維粗度儀掃描晶圓中心處(r=0)表面粗糙度形貌 172~175 圖4.1.34(a)~圖4.1.34(g) 銅膜晶圓研磨前,SPM掃描晶圓切片表面粗糙度形貌 175~178 圖4.2.1(a)~圖4.2.1(f) 不同實驗條件下,液動壓力 (kPa)等高線分佈與立體示意圖 179~184 圖4.2.2(a)~圖4.2.2(f) 不同實驗條件下,之流場大小(m3/s)及方向示意圖 185~190 圖4.2.3(a)~圖4.2.3(f) 不同實驗條件下,液膜厚度HD(mm)等高線分佈與立體示圖 191~196 圖4.2.4(a)~圖4.2.4(f) 不同實驗條件下,晶圓研磨墊間視面積接觸壓力 (kPa)等高線分佈與立體示意圖 197~202 圖4.2.5(a)~圖4.2.5(f) 不同實驗條件下,晶圓研磨墊間真實接觸壓力 (MPa)等高線分佈與立體示意圖 203~208 圖4.2.6(a)~圖4.2.6(g) 不同實驗條件下,晶圓研磨墊接觸面積半徑 (mm)等高線分佈與立體示意圖 209~214 圖4.2.7(a)~圖4.2.7(f) 不同實驗條件下,研磨墊變形量 (mm)等高線分佈與立體示意圖 215~220 圖4.2.8(a)~圖4.2.8(f) 不同實驗條件下,晶圓砥粒間塑性真實接觸面積半徑 (nm)等高線分佈與立體示意圖 221~226 圖4.2.9(a)~圖4.2.9(f) 不同實驗條件下,晶圓塑性變形量( )等高線分佈與立體示意圖 227~232 圖4.2.10(a)~圖4.2.10(b) 不同晶圓研磨墊轉速方向下,晶圓研磨墊間相對速度方向 233 圖4.2.11(a)~圖4.2.11(f) 不同實驗條件下,砥粒刮蝕機械移除率 ( )等高線分佈與立體示意圖 234~239 圖4.3.1 不同研磨條件下,接觸壓力的徑向分佈 240 圖4.3.2 不同研磨條件下,達自動平衡點所需施加的背壓之徑向壓力分布 240

    [1] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, San Francisco, 1982.
    [2] Q. Jiang, ‘‘Fractal Structure of Aggregates Induced by Shear Motion,’’ Ph.D. dissertation, Department of Civil Engineering and Engineering Mechanics, University of Arizona, 1993.
    [3] B. E. Logan and J. R. Kilps,“Fractal dimensions of aggregates formed in different fluid mechanical environments,”Water Res. 29, 1995, pp.443-453.
    [4] Majumdar, A. and Tien,C.L.(1990),”Fractal Characterization and Simulaion of Roughness Surface,”Wear,Vol.136,pp.313-327.
    [5] Majumdar, A. and Bhushan, B.(1990),”Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces,”ASME J.Tribol, Vol. 112, pp.205-216.
    [6] Majumdar, A. and Bhushan, B.(1991),”Fractal Model of Elastic- Plastic Contact between Roughness Surface,”ASME J.Tribol, Vol. 1., pp.231-266.
    [7] F. W. Preston, “The Theory and Design of Plate Glass Polishing Machines,” J. Soc. Glass Technology, Vol. 11,1927, pp.214-247.
    [8] J.S. McFarlane and D.Tabor, Relation Between Fraction and Adhesion, Proc. Roy. Soc.,Landon , Series A, Vol. 202,1950, pp.244-253.
    [9] A.C. Eringen, Theory of Micropolar Fluids, J. Math.
    Mech., Vol.16, 1966, pp 1-18.
    [10] A.A. Kingbury, “New Oil Testing Machine and Some of its Results,” Trans. ASME, Vol.24, 1903, pp.144-150
    [11] L. M. Cook, “Chemical Process in Glass Polishing,” J. Non-Crystalline Solid, Vol.120,1990, pp.152-171.
    [12] T. K. Yu, C. C. Yu, M. Orlowski, “A statistical polishing pad model for chemical mechanical polish,” in IEDM Tech. Dig.,1993,pp.865-868.
    [13] T. K. Yu, C. Chris and M. O. Lee, “Combined Asperity
    Contact and Fluid Flow Model for Chemical Mechanical Polishing,” IEEE, 1994, pp.29-34.
    [14] S. R. Runnels, L. M. Eyman, “Tribology Analysis of
    Chemical Mechanical Polishing,” J. Electrochem. Soc., Vol. 141, no.6, June 1994 , pp.1698-1701.
    [15] S. R. Runnels and P. Renteln, “Modeling the Effect of Polishing Pad Deformation on Wafer Surface Stress Distribution During Chemical Mechanical Polishing,” Dielectric Sci. Technil., 1993, pp.100-121.
    [16] S. R. Runnels, “Feature-Scale Fluid-Based Erosion Modeling For Chemical Mechanical Polishing ,” Electrochemical Society Active Member, Vol. 141, No.7, July 1994, pp.1900-1904.
    [17] S. P. Murauka and R. Gutmann, 1994 Annual Report Of The New York State Scoe, Semiconductor Research Corporation, Research Triangle Park, Nc (1994).
    [18] W. Lee, D. W. Shin, M. Tomozawa, S. P. Murarka, ”The Effect of the Polishing Pad Treatments on the Chemical Mechanical Polishing of SiO2 Films,” Thin Solids Films, Vol. 270, 1995, pp.601-606.
    [19] W. T. Tseng, C. W. Liu, B. T. Dai, C. F. Yeh, ”Effect of Mechanical Characteristics on the Chemical Mechanical Polishing of dielectic thin films,” Thin Solid Films, Vol. 290-291, 1996, pp.458-463.
    [20] 曾偉志, VLSI-先進模組技術, VLSI-先進模組技術課程, 第二章, 1998, pp.48-51.
    [21] F. Zhang and A. Busnaina, ”The Role of Particle Adhesion and Surface Deformation In Chemical Mechanical Polishing Process,” Electrochemical and Solid-State Letters, 1(4), 1998, pp.184-187.
    [22] U.Mahajan, M.Bielmann, and R.K.Singh, ”In-Situ Laterial Force Technique For Dynamic Surface Roughness Measurement During Chemical Mechanical Polishing,” Electrochemical and Solid-State Letters, 2(1), 1998, pp.46-48.
    [23] J. Tichy, J. A. Levert, L. Shan, S. Danyluk, “Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing,” J. Electrochem. Soc.,146(4), 1999, pp.1523-1528.
    [24] J.F.Luo. and D.A.Domfeld, “Material Removel Mechanism in Chemical Mechanical Polishing:Theory and Modeling,” IEEE,Transactions on Semiconductor Manufacturing, Vol.14, No.2, 2001, pp.112-133.
    [25] F. B. Kaufman, et al, “Chemical-Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects,” The Electrochemical Society, Inc,No. 11, Nov.1991, pp.3460.
    [26] H. Liang, F. Kaufman, R. Sevilla, S. Anjur, “Wear Phenomena in Chemical Mechanical Polishing,” Wear, Vol.211, 1997, pp.271-279.
    [27] R. Gutmann, J. Steigerwald, L. You, D.Price, J. Neirynck, D. Duquette and S. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer inter-level dielectrics,” Thin Solid Film 270, 1995, pp.596-600.
    [28] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, TX, 1975.
    [29] H. Hirabayashi, M. Higuchi, M. Kinoshita, H. Hagasaka, K. Mase, J. Oshima, “Procedings of the 1st International VMIC Specialty Conference on CMP Planarization”, Santa Clara, CA, Feb. 1996, pp.119.
    [30] Q. Luo, D. R. Campbell, S. V. Babu, “Proceedings of the 1st International VMIC Specialty Conference on CMP Planarization,” Santa Clara, CA, Feb.1996, pp.145.
    [31] D. Zeidler, Z. Stavreva, M. Plotner, K. Drescher, “Characterization of Cu chemical mechanical polishing by electrochemical investigations,” Microelectronic Engineering 33, 1997, pp.259-265.
    [32] V. Nguyen, H. VanKranenburg, P. Woerlee, “Dependency of dishing on polish time and slurry chemistry in Cu CMP, ” Microelectronic Engineering 50 , 2000, pp.403-410.
    [33] M. J. Schick and A. T. Hubbard, Interfacial Forces and Fields:Theory and Applications, Marcel Dekker, New York, 1999, pp519-523.
    [34] T. R. Thomas M.Sc.,Ph.D.,C.Eng.,F.Inst.p., M.I.Mech.E.,M.I.Prod.E., ROUGH SURFACE, pp.105-110.
    [35] Franklin Institute Research Lab.,”NASA Contribution to Fluid-Film Lubrication – A Survey,” NASA SP-5058.
    [36] G. Ahmad, “Self-similar Solution of Incompressible Micro-polar Boundary Layer Flow Over A Semi-infinite Plate,” Int. J. Engng Sci., 1976, Vol.14, pp.639-646.
    [37] Mysore.N.L. Narasimhan, “ Principles of Continuum Mechanics,” 1982,John WILEY & Sons, Inc.,New York.
    [38] N. Patir, H. S. Cheng, “An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication,” ASME J. Lubr. Techno., Vol. 100, January 1978, pp.12-17.
    [39] N. Patir, “Effects of Surface Roughness on Partial Film Lubrication using An Average Flow Model Based on Numerical Simulation,” Northwestern University, June1978
    [40] N. Patir, H. S. Cheng, “Application of Average Flow Model to Lubrication Between Rough sliding surfaces,” ASME J. Lubr. Techno. ,Vol. 101, April 1979, pp.220-230.
    [41] E.D. Tingle, “The importance of surface oxide films in the friction and lubrication of metal, Part 2, The formation of lubrication films on metal surfaces,” Trans. Faraday Soc., Vol. 326, 1950, pp.97-102.
    [42] K. L. Johnson, Contact mechanics, Cambridge University Press, Cambridge, 1989, pp.50-55.
    [43] K. L. Johnson, Contact mechanics, Cambridge University Press, Cambridge, 1989, pp.406-416.
    [44] J. A. Greenwood & J. B. P. Williamson, “Contact of nominally flat surfaces. Proceedings, Royal Society, A295, 1966, pp.300.
    [45] J. Halling, K. A. Nuri, “Contact of rough surfaces of working-hardening materials. In The Mechanics of Contact Between Deformable Bodies,” Eds. De Pater & Kalker. Delft: University Press, 1975.
    [46] A. E. H. Love, “Stress Produced in a semi-infinite solid by pressure on part of the boundary,” Phil. Trans. Royal Society, A228, 1929, pp.377.
    [47] K. L. Johnson, J. A. Greenwood and S. Y. Poon, ”A Simple Theory of Asperity Contact In Elastohydrodynamic Lubrication,” Wear, Vol.19, 1972, pp.91-108.
    [48] S.P. Timoshenko and J.N. Goodier, Theory of Elastic, New York, MeGraw-Hill, 1951, pp.1-404.
    [49] J. Pullen and J. B. P. Williamson, ”On the Plastic Contact of Roughness Surfaces,” Proc. Roy. Soc. London, 1972, Series A327, pp. 157-173.
    [50] W. R. Chang, I. Etsion, D. B. Bogy, “An Elastic-Plastic Model For The Contact Of Rough Surface,” Journal of Tribology, April 1987, Vol.109, pp.257-263.
    [51] D. Tabor, The Hardness of Metals, Oxford University Press.
    [52] G. W. Stachowiak, A. W. Batchelor, Engineering Tribology, 1993, pp.619-624.
    [53] 呂聖章, “含微顆粒之研漿在晶圓化學機械研磨製程磨潤理論之建立與實驗印證”, 碩士論文, 國立成功大學機械工程研究所, 2000.
    [54] B. Bhushan,Ph.D.,D.Sc, Handbook of Micro/Nano Tribology, CRC Press.,1986, Chap 3.
    [55] 沈彥行, “銅膜化學機械研磨研磨粉體凝聚作用對膜潤化學反應速率影響知理論建立及實驗印證”, 碩士論文, 國立成功大學機械工程研究所, 2001.
    [56] 陳俊達, “銅膜之化學機械研磨製程應力作用對磨潤化學反應速率之影響”, 碩士論文, 國立成功大學機械工程研究所, 2000.
    [57]張營煇, “二氧化係晶圓化學研磨之拋光墊花樣對流場及膜潤性能理論分析支建立及實驗印證”, 碩士論文, 國立成功大學機械工程研究所, 2000.

    下載圖示 校內:2004-07-31公開
    校外:2004-07-31公開
    QR CODE