| 研究生: |
沈育宏 Shen, Yu-Hong |
|---|---|
| 論文名稱: |
基於電磁筆顯示器之電子簽名識別系統 A Pen-display-based E-signature Identification System |
| 指導教授: |
王振興
Wang, Jeen-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 擴展式最長共同子序列 、電磁筆顯示器 、簽名識別 、簽名驗證 |
| 外文關鍵詞: | extended longest common subsequence, a pen-display, signature identification, signature verification |
| 相關次數: | 點閱:73 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研發一基於電磁筆顯示器之電子簽名識別系統,其中識別與防偽系統模組以本論文提出之擴展式最長共同子序列(ELCS)演算法為基礎之簽名辨識演算法用以進行簽名識別與驗證。該系統共分成登入系統模組、註冊系統模組及識別與防偽系統模組以進行簽名資料蒐集及辨識結果呈現。電磁筆顯示器透過電磁感應筆(EMP)觸碰技術降低人為干擾可有效擷取使用者簽名時產生的座標、壓力、速度、加速度及筆跡角度等時序訊號作為簽名特徵,透過ELCS計算特徵相似度並使用分數合成策略輸出最後分數,最後系統採用使用者相關門檻值的方法提升系統效能。本論文使用了英文與中文兩種簽名資料庫進行系統驗證,英文資料庫採用文獻較常使用的MCYT-100資料庫,而中文資料庫則蒐集了共40位台灣受測者之簽名。實驗結果顯示,本論文提出之簽名辨識系統在英文與中文資料庫之有經驗之仿冒簽名和隨機仿冒簽名的等誤差率(EER)分別可達到2.98%和1.71%以及1.80%和0.50%。最後,本方法亦與動態時間扭曲演算法及目前文獻中多種簽名驗證方法進行比較,結果顯示無論在英文或中文資料庫,本論文提出之方法皆優於動態時間扭曲演算法,而在MCYT-100資料庫比較結果,亦優於目前文獻中多種簽名驗證的方法。研究結果驗證了本系統應用於簽名識別的可行性,未來可進一步將成果應用在銀行臨櫃身分確認、大樓門禁管理及電子文件管理等方向。
This thesis presents a pen-display-based e-signature identification system. The algorithm of extended longest common subsequence (ELCS) is applied to signature identification and verification. The system consists of an enrollment module, a sign-in module, and an identification and anti-forgery module. A pen-display using electromagnetic resonance pen (EMP) touch technique can reduce anthropogenic disturbance and extract timing signals from signature features such as coordinates, pressure, velocity, acceleration, and handwriting angles. The similarity calculated by ELCS and score-level fusion technique are taken to obtain final score. The writer related threshold is adopted accordingly to improve the identification performance. Two signature databases were used to validate this algorithm. One is the well-known MCYT-100 English database, and the other is Chinese signature database collected from forty Taiwanese subjects. The experiment results indicate that the EER of the English signature database with skilled and random forgeries are 2.98% and 1.71% respectively; and the EER of the Chinese signature database with skilled and random forgeries are 1.80% and 0.50%, respectively. The ELCS algorithm outperforms a dynamic time warping (DTW) algorithm and several existed signature verification methods in both English MCYT-100 database and Chinese signature database. This study may serve the practicality of signature identification. In the future, the pen-display-based e-signature identification system may be further applied to personal identification over-the-counter service in the bank, access control system in buildings, electronic document management and so on.
參考文獻
[1] M. Bashir and J. Kempf, “Area bound dynamic time warping based fast and accurate person authentication using a biometric pen,” Digital Signal Processing, vol. 23, no. 1, pp. 259-267, 2013.
[2] H. Feng and C. C. Wah, “Online signature verification using a new extreme points warping technique,” Pattern Recognit. Lett., vol. 24, no. 16, pp. 2943-2951, 2003.
[3] J. Fierrez-Aguilar, L. Nanni , J. Lopez-Peñalba , J. Ortega-Garcia, and D. Maltoni, “An on-line signature verification system based on fusion of local and global information,” Proc. 5th Int. Conf. Audio- and Video-Based Biometric Person Authentication, pp. 523-532, 2005.
[4] J. Fierrez-Aguilar, J. Ortega-Garcia, D. D. Ramos, and J. Gonzalez-Rodriguez, “HMM-based on-line signature verification: Feature extraction and signature modeling,” Pattern Recognit. Lett., vol. 28, no. 16, pp. 2325-2334, 2007.
[5] A. Fallah, M. Jamaati, and A. Soleamani, “A new online signature verification system based on combining Mellin transform, MFCC and neural network,” Digital Signal Process., vol. 21, no. 2, pp. 404-416, 2011.
[6] D. S. Guru and H. N. Prakash, “Online signature verification and recognition: An approach based on symbolic representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 1059-1073, 2009.
[7] C. Gruber, T. Gruber, S. Krinninger, and B. Sick, “Online signature verification with support vector machines based on LCSS kernel functions,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 4, pp. 1088-1100, 2010.
[8] Y.-L. Hsu, C.-L. Chu, Y.-J. Tsai, and J.-S. Wang, “An inertial pen with dynamic time warping recognizer for handwriting and gesture recognition,” IEEE Sensors J., vol. 15, no. 1, pp. 154-163, 2015.
[9] D. Impedovo and G. Pirlo, “Automatic signature verification: The state of the art,” IEEE Trans. Syst. Man Cybern.—Part C: Applications Rev., vol. 38, no. 5, pp. 609-635, 2008.
[10] A. K. Jain, L. Hong, and S. Pankanti, “Biometric Identification,” Comm. ACM, vol. 43, no. 2, pp. 91-98, 2000.
[11] A. K. Jain, F. D. Griess, and S. D. Connell, “On-line signature verification,” Pattern Recognition, vol. 35, no. 12, pp. 2963-2972, 2002.
[12] A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric recognition,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 1, pp. 4-20, 2004.
[13] A. K. Jain, K. Nandakumar, and A. Ross, “Score normalization in multimodal biometric systems,” Pattern Recognition, vol. 38, no. 12, pp. 2270-2285, 2005.
[14] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On Combining Classifiers,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 226-239, 1998.
[15] R. Kashi , J. Hu , W. L. Nelson, and W. Turin, “A hidden markov model approach to online handwritten signature verification,” International Journal on Document Analysis and Recognition, vol. 1, no. 2, pp. 102-109, 1998.
[16] A. Kholmatov and B. Yanikoglu, “Identity authentication using improved online signature verification method,” Pattern Recognit. Lett., vol. 26, no. 15, pp. 2400-2408, 2005.
[17] W. H. Khoh, T. S. Ong, Y. H. Pang, and A. B. J. Teoh, “Score level fusion approach in dynamic signature verification based on hybrid wavelet-Fourier transform,” Security and Communication Networks, vol. 7, no. 7, pp. 1067-1078, 2014.
[18] F. Leclerc and R. Plamondon, “Automatic signature verification: The state of the art—1989-1993,” Int',l J. Pattern Recognition and Artificial Intelligence, vol. 8, no. 3, pp. 643-660, 1994.
[19] H. Lei and V. Govindaraju, “A comparative study on the consistency of features in on-line signature verification,” Pattern Recognit. Lett., vol. 26, pp. 2483-2489, 2005.
[20] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “uWave: Accelerometer-based personalized gesture recognition and its applications,” Pervasive Mobile Comput., vol. 5, no. 6, pp. 657-675, 2009.
[21] M. López-García, R. Ramos-Lara, O. Miguel-Hurtado, and E. Cantó-Navarro, “Embedded system for biometric online signature verification,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 491-501, 2014.
[22] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, “The DET curve in assessment of detection task performance,” Proc. Eur. Conf. Speech Processing Technology, pp. 1895-1898, 1997.
[23] F.-Z. Marcos, “On-line signature recognition based on VQ-DTW,” Pattern Recognition, vol. 40, no. 3, pp. 981-992, 2007.
[24] M. Martinez-Diaz, J. Fierrez, M. R. Freire, and J. Ortega-Garcia, “On the effects of sampling rate and interpolation in HMM-based dynamic signature verification,” Proc. 9th Int. Conf. Document Anal. Recognit., vol. 2, pp. 1113-1117, 2007.
[25] E. Maiorana, P. Campisi, J. Fierrez, J. Ortega-Garcia, and A. Neri, “Cancelable templates for sequence-based biometrics with application to on-line signature recognition,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 40, no. 3, pp. 525-538, 2010.
[26] L. Nanni, “Experimental comparison of one-class classifiers for on-line signature verification,” Neurocomputing, vol. 69, no. 7-9, pp. 869-873, 2006.
[27] L. Nanni and A. Lumini, “A novel local on-line signature verification system,” Pattern Recognit. Lett., vol. 29, no. 5, pp. 559-568, 2008.
[28] L.-V. Nguyen-Dinh, A. Calatroni, and G. Tröster, “Robust online gesture recognition with crowdsourced annotations,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3187-3220, 2014.
[29] S.-B. Napa and N. Memon, “Online signature verification on mobile devices,” IEEE Trans. Information Forensics and Security, vol. 9, pp. 933-947, 2014.
[30] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez-Zanuy, V. Espinosa, A. Satue, I. Hernaez, J.-J. Igarza, C. Vivaracho, D. Escudero, and Q.-I. Moro, “MCYT baseline corpus: A bimodal biometric database,” IEE Proc. Vision, Image Signal Process., vol. 150, no. 6, pp. 395-401, 2003.
[31] R. Plamondon and G. Lorette, “Automatic signature verification and writer identification—the state of the art,” Pattern Recognition, vol. 22, no. 2, pp. 107-131, 1989.
[32] J. M. Pascual-Gaspar, M. Faundez-Zanuy, and C. Vivaracho, “Fast online signature recognition based on VQ with time modeling,” Eng. Applicat. Artif. Intell., vol. 24, no. 2, pp. 368-377, 2011.
[33] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word recognition,” IEEE Trans. Acoust., Speech, Signal Process., vol. 26, no. 1, pp. 43-49, 1978.
[34] H. Stern, M. Shmueli, and S. Berman, “Most discriminating segment–longest common subsequence (MDLCS) algorithm for dynamic hand gesture classification,” Pattern Recognit. Lett., vol. 34, no. 15, pp. 1980-1989, 2013.
[35] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar multidimensional trajectories,” Proc. IEEE Conf. Data Eng., pp. 673-684, 2002.
[36] B. L. Van, S. Garcia Salicetti, and B. Dorizzi, “On using the Viterbi path along with HMM likelihood information for online signature verification,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 5, pp. 1237-1247, 2007.
[37] C. Vivaracho-Pascual, M. Faundez-Zanuyy, and J. M. Pascual, “An efficient low cost approach for on-line signature recognition based on length normalization and fractional distances,” Pattern Recognition, vol. 42, no. 1, pp. 183-193, 2009.
[38] Y. Xuhua, T. Furuhashi, K. Obata, and Y. Uchikawa, “Constructing a high performance signature verification system using a GA method,” Proc. 2nd New Zealand Two-Stream Int. Conf. Artif. Neural Netw. Expert Syst., pp. 170-173, 1995.
[39] L. Yang, B. K. Widjaja, and R. Prasad, “Application of hidden Markov models for signature verification,” Pattern Recognition, vol. 28, no. 2, pp. 161-170, 1995.
[40] D.-Y. Yeung, H. Chang, Y. Xiong, S. George, R. Kashi, T. Matsumoto, and G. Rigoll, “SVC2004: First international signature verification competition,” Proc. Intl. Conf. Biometric Authentication, pp. 16-22, 2004.
[41] B. Yanikoglu and A. Kholmatov, “Online signature verification using fourier descriptors,” Eurasip Journal on Advances in Signal Processing, vol. 2009, pp. 1-14, 2009.
[42] https://www.land.moi.gov.tw/chhtml/createdetail.asp?cnid=1949&city=I&cid=1507&qcode=4
[43] http://www.wacomsolutionpartner.com/category/c36-case-studies/c66-case-studies-telecommunications/?lang=en_sg
[44] https://www.netmarketshare.com/
[45] http://atvs.ii.uam.es/