| 研究生: |
楊智仁 Yang, Chin-Jen |
|---|---|
| 論文名稱: |
以軟/硬體共同設計方式在SOC發展平台上實現JPEG多媒體系統 Implementation of JPEG Multimedia System with Hardware/Software Co-design on SOC Development Platform |
| 指導教授: |
劉濱達
Liu, Bin-Da 楊家輝 Yang, Jar-Ferr |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 系統單晶片 、軟/硬體共同設計 、影樣壓縮 |
| 外文關鍵詞: | Software/Hardware Co-design, JPEG, SoC |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用軟/硬體共同設計及驗證方式在SOC發展平台(含有ARM7TDMI及其晶片組)上來實現JPEG多媒體系統。在經過了系統計算量的分析後,DCT與VLC均為重複性高的函數且佔整體的計算量約51%。因此我們決定將DCT與VLC的函數以硬體的方式實現。DCT則是採用遞迴架構實現,而VLC則是以管線化實現之。
在系統整合方面,運用一個Wrapper將所設計的晶片包裹起來作為與AHB匯流排溝通的介面。並以記憶體為基礎的介面作為晶片與ARM7 TDMI溝通的方式,因此在此設計中所設計的晶片扮演一被控者(slave)的角色,而ARM7 TDMI則是主控者負責複雜的控制與資料的存取。當程式執行到DCT或VLC時,由ARM7 TDMI將資料存到DCT或VLC模組裡,在固定週期後再由ARM7 TDMI將資料讀回以繼續程式的執行,反覆上述動作後,最後完成壓縮的程序。
在最後的驗證上,本系統已成功的壓縮大量的圖片資料,並可正確地由通用解壓縮程式解回。整合硬體在FPGA上的最高頻率可操作在22.364MHz,使用FPGA閘數為135K。
In this thesis, a JPEG multimedia system following the hardware/software co-design and co-verification principle is implemented on SOC development platform which includes ARM7TDMI microprocessor and chipset. From the analysis of computational JPEG system, DCT and VLC are highly repetitive and occupy 51% in the total computation. Therefore, we implemented DCT and VLC functions in hardware.The hardware of DCT is implemented in recursive architecture and VLC is in pipelined architecture.
Concerning the integration of JPEG system, we design a wrapper to serve as the communicational interface between the proposed chip and AHB bus. Then we apply RAM-based interface to communicate ARM7TDMI with the designed chip. Thus in this design, our chip plays a slave role, and ARM7TDMI plays a master role which is responsible for complex controls and data access. When JPEG programs run to DCT or
* The author ** The Advisors
VLC function, ARM7TDMI stores data into the local memory within designed chip. After a fixed numbers of cycles, ARM7TDMI reads out computed data from the chip and continue to execute the next functions in programs. ARM7TDMI will proceed the above actions until JPEG programs are finished.
In the final verification, the system has successfully compressed quite a few pictures, and these compressed pictures are able to be decompressed accurately and correctly by general JPEG decompression programs. The maximum frequency at which integrated hardware can be operated on FPGA is 22.364MHz, and the number of gate counts is 135K.
參考文獻
1. D. Panigrahi, C. N. Taylor, S. Dey, “A hardware/software reconfigurable architecture for adaptive wireless image communication,” in Proc. ASP-DAC, 2002, pp.553 -558
2. R. E. Haskell, D. M. Hanna, “FPGA integrated co-design,” in Proc. Int. Conf. on Microelectronic Systems Education, 2001, pp. 30 -31
3. Y. Heneault, L. Filion, G. Bois, E. M. Aboulhamid, “A fast hardware co-specification and co-simulation methodology integrated in a H/S co-design platform,” in Proc. ICM 13th Int. Conf. on Microelectronics, 2001, Page(s): 253 -256
4. J. Liu, M. Zhu, J. Bian, H. Xue, “A debug sub-system for embedded-system co-verification,” in Proc. 4th Int. Conf. on ASIC, 2001, pp. 777 -780
5. H. Zedan, A. Cau, “Voice over IP: Correct hardware/software co-design,” in Proc. 8th IEEE Workshop on FTDCS, 2001 , pp. 194 -200
6. T. Noda, M. Fukuda, H. Chiba, K. Murashita, Y. Komagata, M. Mori, ”A JPEG still picture compression LSI ,” in Symp. VLSI Circuits Dig. Tech. Papers, 1991, pp. 33 -34
7. S. Okada, Y. Matsuda, T. Watanabe, K. Kondo, “A single chip motion JPEG codec LSI,” IEEE Trans. Consumer Electron. vol. 43, no. 3, pp. 418 -422, Aug. 1997
8. K. Ogawa, T. Urano, K. Kondo, N. Mori, S. Moriai, H. Yamamoto, S. Kato, “A single chip compression/decompression LSI based on JPEG,” IEEE Trans. Consumer Electron. vol. 38 no. 3, pp. 703 -710, Aug. 1992
9. D. A. Luthi, T. Po, P. A. Ruetz, “A video-rate Jpeg chip set,” in Proc. IEEE Cust. Int. Circuits Conf., pp. 26.2.1 -26.6.4, 1992.
10. S. Okada, S. Okada, Y. Matsuda, T. Yamada, A. Kobayashi, ”System on a chip for digital still camera,” IEEE Trans. Consumer Electron., vol. 45 no. 3, pp. 584 -590, Aug. 1999
11. M. Kovac and N. Ranganathan, “JAGUAR: A full pipelined VLSI architecture for JPEG image compression standard,” Proc. IEEE, vol. 83, no. 2, Feb. 1995.
12. H. C. Chang, L. G. Chen, Y. C. Chang, S. C. Huang, ”A VLSI architecture design of VLC encoder for high data rate video/image coding,” in Proc. 1999 Int. Symp. Circuits and Syst., vol.4, pp. 398 -401, 1999.
13. J. L. Wang, C. B. Wu, B. D. Liu, J. F. Yang, “Implementation of the discrete cosine transform and its reverse by recursive structures,” in Proc. IEEE Workshop on Signal Processing Systems, 1999, pp.120-130.
14. ITU/CCITT, Recommendation T.81, Digital compression and coding of continuous-tone still images, Sep. 1992.
15. J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, MPEG Video Compression Standard, New York, Chapman & Hall, 1996.
16. R. Rajsuman, System-on-a-chip: Design and Test, Norwood, MA: Artect House 2000
17. N. Ahmeed, T. Natarajan, and K. R. Rao, “Discrete cosine transform” IEEE Trans. Comput., vol. C-23, pp. 88-93, Jan. 1973.
18. R. J. Clarke, “ Relation between the Karhunen-Loeve and cosine transform,” in Proc. Inst. Elec. Eng., vol. 128, pt. F, no. 6, pp.359-360, Nov. 1981.
19. M. Liou, “Overview of the px64 kbits/s video coding standard,” Commun. ACM, vol. 34, no. 4, pp. 59-63, Apr. 1991.
20. G. K. Walllace, “The JPEG still picture compression standard,” Commun. ACM, vol. 34, no. 4, pp. 30-44, Apr. 1991.
21. D. J. LeGall, “MPEG: a video compression standard for multimedia applications,” Commun. ACM, vol. 34, no. 4, pp. 46-58, Apr. 1991.
22. M. Barbero, Succhi, and H. Bailon, “A flexible architecture for a HDTV codec based on DCT,” Signal Process. of HDTV II, pp. 587-594, L. Chiariglione, Ed. Elsevier, 1990.