| 研究生: |
詹逸珊 Chan, Yi-Shan |
|---|---|
| 論文名稱: |
台灣浮動式離岸風電發展之經濟與環境效益分析 Analysis of the Economic and Environmental Benefits of Floating Offshore Wind Development in Taiwan |
| 指導教授: |
黃韻勳
Huang, Yun-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 浮動式離岸風電 、投入產出分析 、經濟影響 、減碳效益 |
| 外文關鍵詞: | Floating offshore wind, Input-Output Analysis, Economic impact, Carbon reduction benefits |
| 相關次數: | 點閱:37 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球氣候變遷與淨零碳排壓力日益加劇的情勢下,能源轉型已成為多數國家邁向永續發展的重要途徑,離岸風電因具備高穩定性與大規模發電潛力,已成為全球能源政策中的重要技術。台灣為達成2050年淨零目標,規劃於2030年達成13.1 GW離岸風電裝置容量,並於2046至2050年間提升至40至55 GW,其中浮動式離岸風電將扮演未來目標量的關鍵角色。本研究以台灣浮動式離岸風電為研究對象,透過投入產出分析(Input-Output Analysis)評估其對台灣經濟與產業結構的潛在貢獻。首先整理國內外浮動式離岸風電之技術現況與成本結構,建立符合台灣產業體系的投入產出模型。為預測裝置容量之發展趨勢,本研究透過S曲線設計高、中、低三種發展情境,並搭配學習曲線預測其成本下降趨勢。透過模擬結果,分析浮動式離岸風電對各產業帶來的經濟影響及其在不同發展情境下的減碳潛力,以綜合探討其經濟與環境效益。
研究結果顯示,浮動式離岸風電無論在建置或運維階段,皆具備顯著的經濟帶動潛力。建置階段的產值與所得貢獻高度集中於資本密集型產業,如:金屬製品、機械設備與營建工程。在產業快速擴展的高成長情境下,2040年總產值帶動高達1.97兆元,附加價值貢獻逾1兆元,創造逾47萬個工作機會,所得帶動高達4,000億元,展現在高投資期的潛在經濟效益。相較之下,運維階段雖年效益相對較小,但具長期穩定特性,對區域經濟與服務型產業結構具持續性貢獻。高成長情境下2050年可帶動達500億元的產值帶動,並創造1.4萬人就業與138億所得帶動。在環境效益方面,本研究顯示,隨著裝置容量與發電量成長,其減碳潛力亦同步提升,在高成長情境下2050年二氧化碳減量約1040.42萬噸,即使在低成長情境下減碳量亦達685.86萬噸。
最後,依據研究結果,建議政府未來在推動能源轉型政策時,同步落實產業在地化、技術能力提升與人才之培育等規劃,以確保產業發展的持續性與自主性。亦建議強化綠色金融,以促進整體產業對離岸風電等減碳項目的參與,加速低碳轉型進程。
In pursuit of net-zero carbon emissions by 2050, Taiwan has set ambitious targets to expand offshore wind power capacity to 13.1 GW by 2030 with further growth projected to reach 40 ~ 55 GW by 2050. Floating offshore wind generation technology is expected to play a pivotal role in attaining these goals. This study employed input-output analysis to assess the impact of offshore power generation on industrial development, carbon reduction, and key national economic indicators. Learning curves were used to predict trends in cost reduction, and the trajectory of installed capacity was simulated under three scenarios: high-growth, baseline-growth, and low-growth.
Our findings indicate that Floating offshore power generation will provide considerable economic and environmental benefits. During the construction phase, these projects could have substantial short-term economic benefits, particularly in capital-intensive industries. Under the high-growth scenario, it is estimated that by 2040, this sector could drive NT$1.97 trillion in output and support nearly 500,000 jobs. Despite a modest economic effects during the operations and maintenance (O&M) phase, these projects could make a sustained contribution to regional economies and service-oriented sectors. Under the high-growth scenario, O&M could generate NT$50 billion in output and generate roughly 14,000 jobs driving NT$13.8 billion in income.
Carbon reduction potential scales proportionally with installed capacity. By 2050, annual CO2 emissions could be reduced by 10.4 million tons under the high-growth scenario or 6.86 million tons under the low-growth scenario.
[1] 工業技術研究院(2023),溫室氣體長期減量策略與環境衝擊關連探討計畫,財團法人工業技術研究院。
[2] 行政院主計總處(2022),人力資源調查統計年報:民國110年,行政院主計總處。
[3] 行政院主計總處(2023),110年產業關聯表,中華民國統計資訊網。
[4] 李均憲、徐力平(2024),我國離岸浮式風機之發展與現況,營建知訊,499,25-32。
[5] 吳筌駿(2023),臺中港成為浮動式離岸風電母港及組裝港之可行性-臺中港離岸風電實務工作者見解的質性研究分析,國立高雄科技大學碩士論文,臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/68z4t7
[6] 莊閔茜(2024),風力發電原理、優缺點是什麼?台灣區塊開發進度一文掌握, RECCESSARY。https://www.reccessary.com/zh-tw/news/world-market/what-is-wind-power
[7] 陳思妤(2023),利用專利分析進行技術預測:評估浮動式離岸風電技術創新發展,國立政治大學碩士論文,臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/8pqb98
[8] 經濟部(2023),臺灣2050淨零轉型「風電/光電」關鍵戰略行動計畫(核定本)。
[9] 經濟部(2024),我國電力能源配比政策,與電價調整對民生物價、產業之影響評估與執行方案:專案報告,經濟部。
[10] Allan, G., Comerford, D., Connolly, K., McGregor, P., & Ross, A. G. (2020). The economic and environmental impacts of UK offshore wind development: The importance of local content. Energy, 199, 117436.
[11] Brelik, A., Nowaczyk, P., & Cheba, K. (2023). The economic importance of offshore wind energy development in Poland. Energies, 16(23), 7766.
[12] Catapult, O. R. E. (2021). Floating offshore wind: Cost reduction pathways to subsidy free. ORE CATAPULT Report.
[13] Connolly, K. (2020). The regional economic impacts of offshore wind energy developments in Scotland. Renewable Energy, 160, 148-159.
[14] DNV. (2024). ENERGY TRANSITION OUTLOOK 2024.
[15] Global Wind Energy Council. (2025). Global Wind Report 2025.
[16] GMI (2025). Floating Offshore Wind Energy Market Size. Global Market Insights. https://www.gminsights.com/industry-analysis/floating-offshore-wind-energy-market
[17] GMI (2025). Fixed Offshore Wind Energy Market. Global Market Insights. https://www.gminsights.com/industry-analysis/fixed-offshore-wind-energy-market
[18] Harijan, K., Uqaili, M. A., Memon, M., & Mirza, U. K. (2011). Forecasting the diffusion of wind power in Pakistan. Energy, 36(10), 6068-6073.
[19] Hernandez-Negron, C. G., Baker, E., & Goldstein, A. P. (2023). A hypothesis for experience curves of related technologies with an application to wind energy. Renewable and Sustainable Energy Reviews, 184, 113492.
[20] IEA (2024). Renewables 2024: Analysis and forecasts to 2030. IEA. https://www.iea.org/reports/renewables-2024
[21] IEA (2025). Global Energy Review 2025. IEA. https://www.iea.org/reports/global-energy-review-2025, Licence: CC BY 4.0
[22] Jimenez, T., Keyser, D., & Tegen, S. (2016a). Floating offshore wind in Hawaii: potential for jobs and economic impacts from two future scenarios. National Renewable Energy Laboratory, Bureau of Ocean Energy Management, 2016-032.
[23] Jimenez, T., Keyser, D., Tegen, S. & Speer, B. (2016b). Floating offshore wind in Oregon: potential for jobs and economic impacts from two future scenarios. National Renewable Energy Laboratory, 2016.
[24] Lochot, V., Khalilpour, K., Hoadley, A. F., & Sánchez, D. R. (2024). French economy and clean energy transition: A macroeconomic multi-objective extended input-output analysis. Sustainable Futures, 8, 100285.
[25] Markaki, M., Belegri-Roboli, A., Michaelides, P., Mirasgedis, S., & Lalas, D. P. (2013). The impact of clean energy investments on the Greek economy: An input–output analysis (2010–2020). Energy Policy, 57, 263-275.
[26] Mai, T., Beiter, P., Mowers, M., Shields, M., & Duffy, P. (2023). Deployment Implications of Reaching the DOE Floating Offshore Wind Shot Goal: A Summary of Initial Results and Methods (No. NREL/PR-5000-86020). National Renewable Energy Laboratory (NREL), Golden, CO (United States).
[27] McCoy, A., Musial, W., Hammond, R., Mulas Hernando, D., Duffy, P., Beiter, P., Pérez, P., Baranowski, R., Reber, G., & Spitsen, P. (2024). Offshore Wind Market Report: 2024 Edition (No. NREL/TP-5000-90525). National Renewable Energy Laboratory (NREL), 2024.
[28] Nagashima, S., Uchiyama, Y., & Okajima, K. (2017). Hybrid input–output table method for socioeconomic and environmental assessment of a wind power generation system. Applied Energy, 185, 1067-1075.
[29] Santhakumar, S., Heuberger-Austin, C., Meerman, H., & Faaij, A. (2023). Technological learning potential of offshore wind technology and underlying cost drivers. Sustainable Energy Technologies and Assessments, 60, 103545
[30] Schallenberg-Rodriguez, J., & Inchausti-Sintes, F. (2021). Socio-economic impact of a 200 MW floating wind farm in Gran Canaria. Renewable and Sustainable Energy Reviews, 148, 111242.
[31] Stehly, T., Duffy, P., & Mulas Hernando, D. (2024). Cost of Wind Energy Review: 2024 Edition (No. NREL/PR-5000-91775). National Renewable Energy Laboratory (NREL), Golden, CO (United States).
[32] Speer, B., Keyser, D., & Tegen, S. (2016). Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios (No. NREL/TP-5000-65352). National Renewable Energy Lab.(NREL), Golden, CO (United States).
校內:2027-08-01公開