簡易檢索 / 詳目顯示

研究生: 詹雅涵
Chan, Ya-Han
論文名稱: 使用絲瓜絨材質活性碳負載二氧化錳之電化學電極處理難分解有機/無機酸
Recalcitrant organic/inorganic acids treatment using electrochemical electrode fabricated through deposition of manganese dioxide on the loofah-derived activated carbon
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 107
中文關鍵詞: 電化學氧化絲瓜絨活性碳二氧化錳草酸無機酸
外文關鍵詞: electro-oxo-adsorption, loofah, activated carbon, manganese dioxide, oxalic acid, inorganic acids
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用富有纖維結構之絲瓜絨作為生物質原料、氯化鋅作為活化劑進行化學活化法製備具高比表面積、多孔材質活性碳,並探討活化溫度對活性碳基本特性之影響。後續以過錳酸鉀還原法製備活性碳負載二氧化錳於活性碳上作為電極使用,透過電化學氧化方式氧化在高級氧化技術(AOPs)中主要中間產物草酸和常見之無機酸。在反應動力上,提出動力模型,並根據實驗所得之草酸濃度與錳濃度,推算出反應速率常數及闡述其在反應中代表之意義。研究結果發現二氧化錳可氧化草酸使溶液的總有機碳(TOC)濃度下降,但是碳電極本身的氧化造成反應後期TOC濃度上升,TOC去除率有回升現象。溶液中錳回收方面則是與反應pH值息息相關,然而,透過熱處理後二氧化錳有晶型轉換現象發生,對於改善錳回收有正面之影響。二氧化錳對於氧化無機酸的能力上亦有差異,其中對於亞硝酸氧化能力最好,可於120分鐘內將亞硝酸完全氧化為硝酸。

    Due to the scarcity of available water resources, many researches are devoted to water desalination and recycling. Capacitive deionization (CDI) is one of the main technologies for treating seawater desalination. This study aims at developing electro-adsorption and oxidation process to treat the common organic/inorganic acids in water based on the mechanism of capacitive desalination. Loofah sponge is utilized as precursor to fabricate activated carbon (AC) by chemical activation. The influence of pyrolysis temperature on the characteristics of activated carbon was investigated. The activated carbon-supported manganese dioxide (MnO2) was prepared by reducing potassium permanganate and characterized by X-ray diffraction (XRD). The results of electrochemical experiments showed that manganese dioxide oxidized oxalic acid and reduced the total organic carbon (TOC) concentration of the solution, but the oxidation of the carbon electrode caused to an increase of TOC in the later stage of the reaction. Inorganic acids also were oxidized, however, the low adsorption capacity of the electrode was incapable of removing oxyanions.

    第一章 緒論1 1-1 研究緣起1 1-2 研究目的與內容2 第二章 文獻回顧3 2-1活性碳材與生物炭3 2-2活性碳製備7 2-2-1物理活化8 2-2-2化學活化10 2-3 錳與錳氧化物簡介12 2-3-1二氧化錳13 2-3-2二氧化錳複合材料15 2-3-3電沉積二氧化錳17 2-4 電化學氧化法 21 2-5 電容去離子技術24 2-5-1 電雙層理論 25 2-6 常見之草酸處理方法28 2-6-1臭氧法28 2-6-2 芬頓(Fenton)法30 2-6-3 電化學氧化法32 2-7 常見之無機酸處理方法34 2-7-1 沉澱法34 2-7-2 吸附法34 2-7-3 電化學法35 第三章 實驗設備、材料與方法37 3-1 研究架構及流程37 3-2 實驗分析藥品39 3-3 實驗裝置40 3-3-1 活性碳製備40 3-3-2 二氧化錳/活性碳複合材料製備41 3-3-3 二氧化錳/活性碳電極製作41 3-3-4 二氧化錳/活性碳複合電極之應用測試43 3-4 實驗步驟44 3-4-1 活性碳製備44 3-4-2 二氧化錳/活性碳複合材料製備44 3-4-3 二氧化錳/活性碳電極製備45 3-4-4 二氧化錳/活性碳複合電極之應用測試45 3-5 實驗檢測儀器與分析方法47 3-5-1總有機碳分析儀47 3-5-2感應耦合電漿原子發射光譜儀48 3-5-3掃描式電子顯微鏡48 3-5-4能量散佈光譜儀49 3-5-5 X光繞射分析儀49 3-5-6顯微拉曼光譜儀50 3-5-7表面積及奈米孔徑分析儀50 3-5-8紫外光可見光分光光譜儀50 3-5-9離子層析儀51 3-5-10流動注射分析儀51 3-5-11熱重分析儀52 3-5-12 電化學分析儀52 第四章 結果與討論53 4-1 利用化學活化法合成活性碳53 4-1-1生物炭原料鑑定53 4-1-2溫度對於合成活性碳之影響56 4-2 利用過錳酸鉀還原法合成二氧化錳/活性碳複合材料61 4-2-1探討過錳酸鉀濃度對二氧化錳負載量之影響61 4-2-2二氧化錳/活性碳複合材料鑑定65 4-3 二氧化錳/活性碳複合電極之應用71 4-3-1二氧化錳/活性碳複合電極處理草酸71 4-3-2反應動力模型 (kinetic model)78 4-3-3熱處理對二氧化錳/活性碳複合材料之影響83 4-3-4二氧化錳/活性碳複合電極處理無機酸89 第五章 結論與建議99 5-1結論99 5-2建議101 參考文獻102

    [1]Y.-J. Shih, R.-L. Huang, and Y.-H. Huang, "Adsorptive removal of arsenic using a novel akhtenskite coated waste goethite," Journal of Cleaner Production, vol. 87, pp. 897-905, 2015.
    [2]Y.-H. Huang, Y.-J. Shih, and F.-J. Cheng, "Novel KMnO4-modified iron oxide for effective arsenite removal," Journal of hazardous materials, vol. 198, pp. 1-6, 2011.
    [3]Y.-J. Shih, P.-Y. Cheng, B. O. Ariyanto, and Y.-H. Huang, "Electrochemical oxidation of carboxylic acids in the presence of manganese chloride," Journal of The Electrochemical Society, vol. 160, pp. H681-H686, 2013.
    [4]H. Marsh and F. R. Reinoso, Activated carbon: Elsevier, 2006.
    [5]O. Ioannidou and A. Zabaniotou, "Agricultural residues as precursors for activated carbon production—a review," Renewable and sustainable energy reviews, vol. 11, pp. 1966-2005, 2007.
    [6]M. A. Yahya, Z. Al-Qodah, and C. Z. Ngah, "Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review," Renewable and Sustainable Energy Reviews, vol. 46, pp. 218-235, 2015.
    [7]P. González-García, "Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications," Renewable and Sustainable Energy Reviews, vol. 82, pp. 1393-1414, 2017.
    [8]J. Pallarés, A. González-Cencerrado, and I. Arauzo, "Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam," Biomass and Bioenergy, vol. 115, pp. 64-73, 2018.
    [9]D. Cuhadaroglu and O. A. Uygun, "Production and characterization of activated carbon from a bituminous coal by chemical activation," African journal of Biotechnology, vol. 7, pp. 3703-3710, 2008.
    [10]G. McDougall, "The physical nature and manufacture of activated carbon," Journal of the Southern African Institute of Mining and Metallurgy, vol. 91, pp. 109-120, 1991.
    [11]M. Kwiatkowski and E. Broniek, "An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 529, pp. 443-453, 2017.
    [12]P. Kurzweil and K. Brandt, "Encyclopedia of Electrochemical Power Sources," Electrochemical Metal Oxides Capacitors, pp. 665-678, 2009.
    [13]M. Danish and T. Ahmad, "A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application," Renewable and Sustainable Energy Reviews, vol. 87, pp. 1-21, 2018.
    [14]M. Açıkyıldız, A. Gürses, and S. Karaca, "Preparation and characterization of activated carbon from plant wastes with chemical activation," Microporous and Mesoporous Materials, vol. 198, pp. 45-49, 2014.
    [15]Y. A. Kim, T. Hayashi, J. H. Kim, and M. Endo, "Important roles of graphene edges in carbon-based energy storage devices," Journal of Energy Chemistry, vol. 22, pp. 183-194, 2013.
    [16]K. Kordesch and W. Taucher-Mautner, CHEMISTRY, ELECTROCHEMISTRY, AND ELECTROCHEMICAL APPLICATIONS| Manganese, 2009.
    [17]G. M. Gadd, "Metals, minerals and microbes: geomicrobiology and bioremediation," Microbiology, vol. 156, pp. 609-643, 2010.
    [18]A. Das, L. Sukla, N. Pradhan, and S. Nayak, "Manganese biomining: a review," Bioresource Technology, vol. 102, pp. 7381-7387, 2011.
    [19]Y.-H. SHI and H.-M. MENG, "Electrochemical Behavior of IrO2 Electrodes in the Anodic Electrodeposition of MnO2," Acta Physico-Chimica Sinica, vol. 27, pp. 461-467, 2011.
    [20]"Atlas of Eh-pH diagrams," , 2005.
    [21]L. Zhou, J. He, J. Zhang, Z. He, Y. Hu, C. Zhang, et al., "Facile in-situ synthesis of manganese dioxide nanosheets on cellulose fibers and their application in oxidative decomposition of formaldehyde," The Journal of Physical Chemistry C, vol. 115, pp. 16873-16878, 2011.
    [22]N. Pan, L. Li, J. Ding, S. Li, R. Wang, Y. Jin, et al., "Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th (IV)/U (VI)," Journal of hazardous materials, vol. 309, pp. 107-115, 2016.
    [23]B. E. Johnson, P. H. Santschi, C.-Y. Chuang, S. Otosaka, R. S. Addleman, M. Douglas, et al., "Collection of lanthanides and actinides from natural waters with conventional and nanoporous sorbents," Environmental science & technology, vol. 46, pp. 11251-11258, 2012.
    [24]Z. Wang, S.-W. Lee, J. G. Catalano, J. S. Lezama-Pacheco, J. R. Bargar, B. M. Tebo, et al., "Adsorption of uranium (VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling," Environmental science & technology, vol. 47, pp. 850-858, 2012.
    [25]E.-J. Kim, C.-S. Lee, Y.-Y. Chang, and Y.-S. Chang, "Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems," ACS applied materials & interfaces, vol. 5, pp. 9628-9634, 2013.
    [26]J. F. Perez-Benito and C. Arias, "A kinetic study of the reaction between soluble (colloidal) manganese dioxide and formic acid," Journal of colloid and interface science, vol. 149, pp. 92-97, 1992.
    [27]J. E. Post, "Manganese oxide minerals: Crystal structures and economic and environmental significance," Proceedings of the National Academy of Sciences, vol. 96, pp. 3447-3454, 1999.
    [28]S. Devaraj and N. Munichandraiah, "Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties," The Journal of Physical Chemistry C, vol. 112, pp. 4406-4417, 2008.
    [29]S.-B. Ma, K.-Y. Ahn, E.-S. Lee, K.-H. Oh, and K.-B. Kim, "Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes," Carbon, vol. 45, pp. 375-382, 2007.
    [30]H. Z. Chi, S. Tian, X. Hu, H. Qin, and J. Xi, "Direct growth of MnO2 on carbon fiber cloth for electrochemical capacitor," Journal of Alloys and Compounds, vol. 587, pp. 354-360, 2014.
    [31]R. Rajagopal and K.-S. Ryu, "Influence of rare earth elements on porosity controlled synthesis of MnO2 nanostructures for supercapacitor applications," Electrochimica Acta, vol. 265, pp. 532-546, 2018.
    [32]C. Orge, J. Órfão, and M. Pereira, "Composites of manganese oxide with carbon materials as catalysts for the ozonation of oxalic acid," Journal of hazardous materials, vol. 213, pp. 133-139, 2012.
    [33]M. Seredych and T. J. Bandosz, "Manganese oxide and graphite oxide/MnO2 composites as reactive adsorbents of ammonia at ambient conditions," Microporous and Mesoporous Materials, vol. 150, pp. 55-63, 2012.
    [34]J. A. Switzer, "Electrochemical synthesis of ceramic films and powders," vol. 66, pp. 1521-1524, 1987.
    [35]G. H. A. Therese and P. V. Kamath, "Electrochemical synthesis of metal oxides and hydroxides," Chemistry of materials, vol. 12, pp. 1195-1204, 2000.
    [36]I. Avramova, D. Stoychev, and T. Marinova, "Characterization of a thin CeO2–ZrO2–Y2O3 films electrochemical deposited on stainless steel," Applied Surface Science, vol. 253, pp. 1365-1370, 2006.
    [37]T. Gujar, V. Shinde, S. Kulkarni, H. Pathan, and C. Lokhande, "Room temperature electrodeposition and characterization of bismuth ferric oxide (BFO) thin films from aqueous nitrate bath," Applied surface science, vol. 252, pp. 3585-3590, 2006.
    [38]I. Zhitomirsky, "Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects," Advances in colloid and interface science, vol. 97, pp. 279-317, 2002.
    [39]R. Patil, M. Uplane, and P. Patil, "Structural and optical properties of electrodeposited molybdenum oxide thin films," Applied Surface Science, vol. 252, pp. 8050-8056, 2006.
    [40]C. Gu, J. Li, J. Lian, and G. Zheng, "Electrochemical synthesis and optical properties of ZnO thin film on In2O3: Sn (ITO)-coated glass," Applied surface science, vol. 253, pp. 7011-7015, 2007.
    [41]J. K. Barton, A. A. Vertegel, E. W. Bohannan, and J. A. Switzer, "Epitaxial electrodeposition of copper (I) oxide on single-crystal copper," Chemistry of materials, vol. 13, pp. 952-959, 2001.
    [42]L. I. Hill, R. Portal, A. Verbaere, and D. Guyomard, "One-Step Electrochemical Synthesis of α MnO2 and α⋅ γ MnO2 Compounds for Lithium Batteries," Electrochemical and Solid-State Letters, vol. 4, pp. A180-A183, 2001.
    [43]L. Bai, D. Qu, B. Conway, Y. Zhou, G. Chowdhury, and W. Adams, "Rechargeability of a chemically modified MnO2/Zn battery system at practically favorable power levels," Journal of the Electrochemical Society, vol. 140, pp. 884-889, 1993.
    [44]D. Das, P. K. Sen, and K. Das, "Electrodeposited MnO 2 as electrocatalyst for carbohydrate oxidation," Journal of applied electrochemistry, vol. 36, pp. 685-690, 2006.
    [45]X.-L. Luo, J.-J. Xu, W. Zhao, and H.-Y. Chen, "Ascorbic acid sensor based on ion-sensitive field-effect transistor modified with MnO2 nanoparticles," Analytica chimica acta, vol. 512, pp. 57-61, 2004.
    [46]J. Broughton and M. Brett, "Variations in MnO2 electrodeposition for electrochemical capacitors," Electrochimica Acta, vol. 50, pp. 4814-4819, 2005.
    [47]G. M. Jacob and I. Zhitomirsky, "Microstructure and properties of manganese dioxide films prepared by electrodeposition," Applied Surface Science, vol. 254, pp. 6671-6676, 2008.
    [48]K. V. Kordesch and J. Davis, "Batteries," Journal of The Electrochemical Society, vol. 121, pp. 380C-380C, 1974.
    [49]J.-P. Petitpierre, C. Comninellis, and E. Plattner, "Oxydation Du MnSO4 en dioxyde de manganese dans H2SO4 30%," Electrochimica Acta, vol. 35, pp. 281-287, 1990.
    [50]G. Davies, "Some aspects of the chemistry of manganese (III) in aqueous solution," Coordination Chemistry Reviews, vol. 4, pp. 199-224, 1969.
    [51]S. Rodrigues, A. Shukla, and N. Munichandraiah, "A cyclic voltammetric study of the kinetics andmechanism of electrodeposition of manganese dioxide," Journal of applied electrochemistry, vol. 28, pp. 1235-1241, 1998.
    [52]A. Cross, A. Morel, A. Cormie, T. Hollenkamp, and S. Donne, "Enhanced manganese dioxide supercapacitor electrodes produced by electrodeposition," Journal of Power Sources, vol. 196, pp. 7847-7853, 2011.
    [53]A. F. Cotton, G. Wilkinson, M. Bochmann, and C. A. Murillo, Advanced inorganic chemistry: Wiley, 1999.
    [54]M. P. Owen, G. A. Lawrance, and S. W. Donne, "An electrochemical quartz crystal microbalance study into the deposition of manganese dioxide," Electrochimica acta, vol. 52, pp. 4630-4639, 2007.
    [55]R. Paul and A. Cartwright, "The mechanism of the deposition of manganese dioxide: part III. Rotating ring-disc studies," Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 201, pp. 123-131, 1986.
    [56]C. A. Martinez-Huitle and S. Ferro, "Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes," Chemical Society Reviews, vol. 35, pp. 1324-1340, 2006.
    [57]H. Särkkä, M. Vepsäläinen, and M. Sillanpää, "Natural organic matter (NOM) removal by electrochemical methods—A review," Journal of Electroanalytical Chemistry, vol. 755, pp. 100-108, 2015.
    [58]A. Anglada, A. Urtiaga, and I. Ortiz, "Contributions of electrochemical oxidation to waste‐water treatment: fundamentals and review of applications," Journal of chemical technology and biotechnology, vol. 84, pp. 1747-1755, 2009.
    [59]H. Shi, "Activated carbons and double layer capacitance," Electrochimica Acta, vol. 41, pp. 1633-1639, 1996.
    [60]S. Porada, R. Zhao, A. Van Der Wal, V. Presser, and P. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization," Progress in Materials Science, vol. 58, pp. 1388-1442, 2013.
    [61]C. J. Gabelich, T. D. Tran, and I. M. Suffet, "Electrosorption of inorganic salts from aqueous solution using carbon aerogels," Environmental science & technology, vol. 36, pp. 3010-3019, 2002.
    [62]J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, "Capacitive, deionization with carbon aerogel electrodes: carbonate, sulfate, and phosphate," Lawrence Livermore National Lab.1995.
    [63]G.-H. Huang, T.-C. Chen, S.-F. Hsu, Y.-H. Huang, and S.-H. Chuang, "Capacitive deionization (CDI) for removal of phosphate from aqueous solution," Desalination and Water Treatment, vol. 52, pp. 759-765, 2014.
    [64]呂冠霖、司洪濤、黃香玫, "氧化處理技術在高濃度COD廢水處理之應用," 經濟部工業局,2008.
    [65]C. Orge, J. L. Faria, and M. F. R. Pereira, "Removal of oxalic acid, oxamic acid and aniline by a combined photolysis and ozonation process," Environmental technology, vol. 36, pp. 1075-1083, 2015.
    [66]D. Ghime and P. Ghosh, "Heterogeneous Fenton degradation of oxalic acid by using silica supported iron catalysts prepared from raw rice husk," Journal of Water Process Engineering, vol. 19, pp. 156-163, 2017.
    [67]Y. Zuo and J. Hoigne, "Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron (III)-oxalato complexes," Environmental Science & Technology, vol. 26, pp. 1014-1022, 1992.
    [68]A. Safarzadeh-Amiri, J. R. Bolton, and S. R. Cater, "Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water," Water Research, vol. 31, pp. 787-798, 1997.
    [69]Y.-H. Huang, Y.-J. Shih, and C.-H. Liu, "Oxalic acid mineralization by electrochemical oxidation processes," Journal of hazardous materials, vol. 188, pp. 188-192, 2011.
    [70]E. O. Kartinen Jr and C. J. Martin, "An overview of arsenic removal processes," Desalination, vol. 103, pp. 79-88, 1995.
    [71]C. Jones, B. Hudson, and P. McGugan, "The removal of arsenic (V) from acidic solutions," Journal of Hazardous Materials, vol. 2, pp. 333-345, 1977.
    [72]Y. Yao, B. Gao, M. Inyang, A. R. Zimmerman, X. Cao, P. Pullammanappallil, et al., "Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings," Journal of hazardous materials, vol. 190, pp. 501-507, 2011.
    [73]N. Bektaş, H. Akbulut, H. Inan, and A. Dimoglo, "Removal of phosphate from aqueous solutions by electro-coagulation," Journal of Hazardous Materials, vol. 106, pp. 101-105, 2004.
    [74]A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications vol. 2: wiley New York, 1980.
    [75]中華民國行政院環境保護署,"廢棄物中灰分、可燃份測定方法,", 2003.
    [76]S. Nijjer, J. Thonstad, and G. Haarberg, "Oxidation of manganese (II) and reduction of manganese dioxide in sulphuric acid," Electrochimica acta, vol. 46, pp. 395-399, 2000.
    [77]陳盈竹, "奈米結構之氫氧化鐵作為新穎負極材料於非對稱式電化學電容之應用 ", 國立臺灣大學碩士論文, 2013.
    [78]W. Wei, X. Cui, W. Chen, and D. G. Ivey, "Manganese oxide-based materials as electrochemical supercapacitor electrodes," Chemical society reviews, vol. 40, pp. 1697-1721, 2011.
    [79]中華民國行政院環境保護署,"台灣放流水標準," , 2014.

    無法下載圖示 校內:2023-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE