| 研究生: |
吳承勳 Wu, Cheng-Syun |
|---|---|
| 論文名稱: |
應用於超高解析度影像之疊代立方內插法 Iterative Cubic Interpolation for Super Resolution Images |
| 指導教授: |
劉濱達
Liu, Bin-Da |
| 共同指導教授: |
楊家輝
Yang, Jar-Ferr |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 超高解析度 、立方內插函數 、疊代內插法 |
| 外文關鍵詞: | super resolution, cubic convolution, iterative interpolation |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一應用於高解析度影像放大的疊代內插演算法,其根據內插像素的座標與鄰近的像素關係,採用疊代內插或進行邊緣偵測再內插。本文在邊緣偵測器之中加入了由實驗得到的臨界值,以此將內插分為有方向性與無方向性內插。方向性內插主要用以避免在高頻訊號方向進行內插而產生模糊影像,疊代內插與無方向性內插則用以處理低頻訊號,內插的權重是由立方內插函數經過化簡與調整參數而得,其進行低頻訊號內插時獲得的效果比雙立方內插函數還好。
當輸入的影像大小為176×144,輸出的影像大小為352×288時,本文的訊雜比可提升0.1dB到0.2dB。當輸入的影像大小為1920×1080,輸出的影像大小為3840×2160時,訊雜比可提升0.05dB。並且不論是低解析度還是高解析度影像,本文的結構相似度都是最接近1,優於其他內插方法。
This article proposes an iterative interpolation algorithm for upsampling super resolution images. The algorithm using iterative interpolation or edge detecting before interpolation according to the coordinate of input pixels and the relationship of nearby pixels. To divide the interpolation into directive and none directive interpolation this article adding a threshold value in the edge detector. The directive interpolation is used to prevent image blurred when interpolate in the high frequency domain. Iterative interpolation and none directive interpolation are used to process low frequency signal and the weighting function of interpolation is generated from simplify and adjust the parameter of cubic interpolation which the result was better than bicubic interpolation when interpolate in the low frequency domain.
When the input image size is 176 by 144 and the output image size is 352 by 288 the PSNR can be improved 0.1dB to 0.2dB. When the input image size is 1920 by 1080 and the output image size is 3840by2160 the PSNR can be improved 0.05dB. The result of structure similarity of the proposed method is better than the other method.
[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading, MA: Addison-Wesley, 1992.
[2] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision. Pacific Grove, CA: Baker & Taylor Books, 1998.
[3] H. S. Hou and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust., Speech, Signal Process., vol. 26, pp. 508-517, Dec. 1978.
[4] R. G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, pp.1153-1160, Dec. 1981.
[5] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: part I-theory,” IEEE Trans. Signal Process., vol. 41, pp. 821-833, Feb. 1993.
[6] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: II-efficient design and applications,” IEEE Trans. Signal Process., vol. 41, pp. 834-848, Feb. 1993.
[7] S. Samadi, M. O. Ahmad, and M. N. S. Swamy, “Characterization of B-spline digital filters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, pp. 808-816, Apr. 2004.
[8] Y. Cha and S. Kim, “The error-amended eharp edge (EASE) scheme for image zooming,” IEEE Trans. Image Process., vol. 16, pp. 1496-1505, June 2007.
[9] Y. Cha and S. Kim, “Error-amended sharp edge (EASE) schemes for image interpolation,” in Proc IEEE ICIP, Oct. 2009, pp. 701-704.
[10] C. C. Lin, M. H. Sheu, H. K. Chiang, Z. C. Wu, J. Y. Tu, and C. H. Chen, “A low-cost VLSI design of extended linear interpolation for real time digital image processing,” in Proc IEEE ICESS, July 2008, pp. 196-202.
[11] Q. Wang and R. K. Ward, “A new orientation-adaptive interpolation method,” IEEE Trans. Image Process., vol. 16, pp. 889-900, Apr. 2007.
[12] J. W. Han, J. H. Kim, S. H. Cheon, J. O. Kim, and S. J. Ko, “A novel image interpolation method using the bilateral filter,” IEEE Trans. Consum. Electron., vol. 56, pp. 175-181, Feb. 2010.
[13] J. W. Hwang and H. S. Lee, “Adaptive image interpolation based on local gradient features,” IEEE Signal Process. Lett., vol. 11, pp. 359-362, Mar. 2004.
[14] Y. Itoh, “An edge-oriented progressive image coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, pp. 135-142, Apr. 1996.
[15] B. D. Choi and H. Yoo, “Design of piecewise weighted linear interpolation based on even-odd decomposition and its application to image resizing,” IEEE Trans. Consum. Electron., vol. 55, pp. 2280-2286, Nov. 2009.
[16] Y. Luo, S. Liu, and H. Zhu, “Edge-directed interpolation based on canny detector,” in Proc IEEE ICMA, Aug. 2011, pp. 698-702.
[17] Y. Cha and S. Kim, “Edge-forming methods for color image zooming,” IEEE Trans. Image Process., vol. 15, pp. 2315-2323, Aug. 2006.
[18] J. H. Lee, J. O. Kim, J. W. Han, K. S. Choi, and S. J. Ko, “Edge-oriented two-step interpolation based on training set,” IEEE Trans. Consum. Electron., vol. 56, pp. 1848-1855, Aug. 2010.
[19] C. C. Lin, M. H. Sheu, C. Liaw, and H. K. Chiang, “Fast first-order polynomials convolution interpolation for real-time digital image reconstruction,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, pp. 135-142, Sep. 2010.
[20] X. M. Li, C. M. Zhang, and Y. Z. Yue, “Fitting to image by piecewise bi-cubic surface,” in Proc IEEE CADCG, Aug. 2009, pp. 166-169.
[21] M. Ohashi, X. H. Han, and Y. W. Chen, “Hierarchical super-resolution approach for expanding image with high magnification,” in Proc IEEE ICNC, Aug. 2009, pp. 22-25.
[22] E. H. W. Meijering, K. J. Zuiderveld, and M. A. Viergever, “Image reconstruction by convolution with symmetrical piecewise nth-order polynomial kernels," IEEE Trans. Image Process., vol. 8, pp. 192-201, Feb. 1999.
[23] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Trans. Image Process., vol. 10, pp. 1521-1527, Oct. 2001.
[24] K. Jensen and D. Anastassiou, “Subpixel edge localization and the interpolation of still images,” IEEE Trans. Image Process., Vol. 4, pp. 285-295, Mar. 1995
[25] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag., Vol. 20, pp. 21-36, May 2003.
[26] C. C. Lin, M. H. Sheu, H. K. Chiang, C. Liaw, and Z. C. Wu, “The efficient VLSI design of bi-cubic convolution interpolation for digital image processing,” in Proc IEEE ISCAS, May 2008, pp. 480-483.
[27] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment : from error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, pp. 600-612, Apr. 2004.