簡易檢索 / 詳目顯示

研究生: 朱振志
Chu, Chen-Chih
論文名稱: 製備具螢光性之溶膠凝膠型模版高分子團聚對肌酸酐分子之專一性吸附探討
Preparation of fluorescence sol-gel imprinted polymer matrix for the investigation on the specific binding of creatinine molecules.
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 83
中文關鍵詞: 肌酸酐分子模版螢光溶膠-凝膠法有機-無機混成模版高分子
外文關鍵詞: Creatinine, Molecularly imprinted polymers (MIPs), Fluorescence, Sol-gel, Oragnic-inorganic hybrid
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌酸酐 (Creatinine) 為人體肌肉代謝的產物,因此可藉由肌酸酐的含量來判斷人體腎臟的健康與否,故為人體腎臟健康的指標因子。而本論文是以溶膠凝膠之合成方式製備出具有螢光性質之模版高分子,以利用螢光檢測及高效能液相層析儀感測肌酸酐。
    以 4-bromo-1,8-naphthalic anhydride 作為原物料,進行二步驟反應,製備具有螢光性質的功能性單體4-methylamino-N-allylnaphthalimide (4-MAAN1),並以H1 NMR 與 FT-IR 進行鑑定,再以3D螢光圖譜找出該功能性螢光單體的最佳激發波長與放射波長;在實驗部份是利用該螢光單體的碳碳雙鍵欲與vinyltrimethoxysilane (VTMOS) 之C=C 合成出具螢光效應之寡聚物,再和tetraethoxysilane (TEOS) 以溶膠凝膠之方式合成出新型之螢光模版高分子。
    本論文之溶膠凝膠型模版高分子是由4-methylamino-N-allylnaphthalimide,vinyltrimethoxysilane 與tetraethoxysilane 形成,溶膠凝膠型模版高分子形成後,以甲醇萃洗,一旦模印分子肌酸酐被萃洗後,即會留下對於肌酸酐有專一性吸附能力的辨識孔洞。
    以高效能液相層析儀對肌酸酐進行感測,其螢光模版高分子 (F-MIP) 對於肌酸酐之模印因子可達3.28 ± 0.14,若以vinyltrimethoxysilane 形成之聚合物所製備出的肌酸酐模版高分子 (MIP) 則對於肌酸酐之模印因子可達3.87 ± 0.38。
    當以N-hydroxysuccinimide、creatine及2-pyrrolidinone等作為選擇物時,MIP對肌酸酐於前述對應之雙成分容易中所得之最佳選擇率,分別為4.00 ± 0.37、2.42± 0.18 及2.03 ± 0.16;而螢光模版高分子 (F-MIP) 對於上述選擇物之選擇性為3.90 ± 0.46、2.26 ± 0.20 及2.01 ± 0.13。
    最後檢測於血清中的肌酸酐含量發現當vinyltrimethoxysilane 與
    tetraethoxysilane 所佔比例越少時,其模版因子越佳。MIP 其模印因子可達 1.74 ±0.12,F-MIP 則達1.54 ± 0.18。
    綜觀上述結果可得到以功能性螢光單體與vinyltrimethoxysilane 已合成出新型具有螢光性之寡聚物,再與tetraethoxysilane 經由溶膠凝膠程序製備的螢光模版高分子 (F-MIP) 對肌酸酐具有專一性的吸附能力,但其吸附效果不如以vinyltrimethoxysilane 與tetraethoxysilane 合成得到的模版高分子。

    Creatinine levels in blood and urine is clinically important because it is a measurement of renal function. It is necessary to develop a fast and accurate biosensor toward creatinine. Molecularly imprinted polymers (MIPs) are an approach using an artificial material as a biomimetic antibody. They are synthesized by solidification of polymers in the presence of template molecules. The template molecules are then washed out by proper solvent so that the binding sites possess specific affinity for and complementary structure to the template molecule. MIPs can be used in biosensors. In this research, the solidification of polymers was conducted by crosslinking vinyltrimethoxysilane (VTMOS) and tetraethoxysilane (TEOS) to form the sol-gel matrix with creatinine, called MIP, while with a fluorescent functional monomer incorporated into the matrix is called F-MIP. After the adsorption, HPLC analysis was employed to compare the result of fluorescent detection toward creatinine.
    The temperature for sol-gel matrix curing was at 70 oC. After the matrix formed, creatinine was extracted out by methanol for 12 hours. An imprinting factor of 3.28 ± 0.14 can be achieved by the F-MIP while that by the MIP was 3.87 ± 0.38. The binding capacity of the imprinted sol-gel under different concentration of creatinine was also obtained. The behavior toward adsorption appeared to be a type of multi-layer. The selectivity test was carried out in the binary mixtures of creatinine/N-hydroxysuccinimide, creatinine/creatine and creatinine/2-pyrrolidinone.
    The selectivity of F-MIP under N-hydroxysuccinimide, creatine and 2-pyrrolidinone, respectively, were obtained as 3.90 ± 0.46, 2.26 ± 0.20 and 2.01 ± 0.13 while those of MIP were 4.00 ± 0.37, 2.42 ± 0.18 and 2.03 ± 0.16, respectively. The binding capacity of the F-MIP in serum was confirmed finally. The imprinting of 1.54 ± 0.18 can be achieved. On the same condition, but with the MIP, the imprinting factor of 1.74 ±
    0.12.

    中文摘要...............................................I 英文摘要................................................ III 誌謝..................................................IV 目錄.....................................V 表目錄.......................................IX 圖目錄................................................XI 第ㄧ章緒論....................................1 1-1 肌酸酐 (Creatinine)....................................1 1-2 螢光 (Fluorescence) ...........................2 1-2-1 螢光發光機制.............................2 1-2-2 振動鬆弛 (Vibrational relaxation)................3 1-3 分子模版高分子 (Molecularly imprinted polymer) .........3 1-4 分子模印之方式......................................4 1-4-1 共價鍵模印 (Covalent imprinting)............5 1-4-2 非共價鍵模印 (Non-covalent imprinting) ..............5 1-5 分子模版高分子之組成元素...........................5 1-5-1 模版分子 (Template) .................5 1-5-2 功能性單體 (Functional monomer).............6 1-5-3 交聯劑 (Crosslinker)..............................6 1-5-4 溶劑 (Solvent)..................6 1-5-5 起始劑 (Initiator) .......................6 1-6 製備分子模版高分子的方法..........................7 1-6-1 總體聚合法 (Bulk polymerization) ................7 1-6-2 懸浮聚合法 (Suspension polymerization)............7 1-6-3 多步驟膨潤聚合法 (Multi-step swelling polymerization)...7 1-6-4 沉澱聚合法 (Precipitation polymerization) ............8 1-6-5 表面模印聚合法 (Surface imprinting polymerization)......8 1-7 分子模版高分子的應用..............................9 1-7-1 層析應用................................9 1-7-2 結合分析與人工觸媒.............................10 1-7-3 生醫感測器.....................................10 1-8 溶膠-凝膠技術介紹................................11 1-8-1 溶膠-凝膠法反應機制.......................11 1-8-2 pH 值對溶膠-凝膠法之影響..........................12 1-8-3 水與溶劑對溶膠-凝膠法之影響................12 1-9 研究動機與目的...........................13 第二章實驗步驟、藥品與器材..........................14 2-1 螢光單體 (4-Methylamino-N-allylnaphthalimide) 之合成...14 2-1-1 合成 4-bromo-N-allylnapthalimide........14 2-1-2 合成 4-methylamino-N-allylnaphthalimide............14 2-2 有機無機混成肌酸酐模版高分子之製備.............15 2-3 有機無機混成肌酸酐模版螢光高分子之製備.................15 2-4 有機無機混成之肌酸酐模板(螢光)高分子之吸附步驟.........18 2-5 有機無機混成肌酸酐模版螢光高分子顆粒之螢光強度檢測.......18 2-6 有機無機混成肌酸酐模版(螢光)高分子顆粒之選擇性吸附......18 2-7 有機無機混成之肌酸酐模版(螢光)高分子在胎牛蛋白血清中之吸附...18 2-8 高效能液相層析儀對肌酸酐溶液 (HPLC) 之分析條件.........19 2-9 實驗藥品...........................................20 2-10 實驗儀器........................................21 第三章結果與討論..................................22 3-1 螢光單體 4-methylamino-N-allylnaphthalimide 之合成與探討..22 3-1-1 FT-IR 圖譜探討......................22 3-1-2 螢光單體 4-methylamino-N-allylnaphthalimide 之 1H NMR 圖譜探討..25 3-2 螢光單體 4-methylamino-N-allylnaphthalimide 之螢光性質探討..26 3-2-1 4-Bromo-1,8-naphthalic anhydride 與4-methylamino-N-allylnaphthalimide 螢光強度之差異...............26 3-2-2 螢光單體 4-methylamino-N-allylnaphthalimide 之螢光 3D 圖譜...26 3-3 有機無機混成肌酸酐模版高分子 (MIP) 之分析與探討...........28 3-3-1 模版高分子之 FT-IR 分析光譜圖.........................28 3-3-2 有機無機混成肌酸酐模版高分子之 NMR 圖譜...........30 3-3-3 有機無機混成肌酸酐模版高分子之表面結構影像.........31 3-4 有機無機混成肌酸酐螢光模版高分子 (F-MIP) 之分析與探討...34 3-4-1 有機無機混成肌酸酐螢光模版高分子 (F-MIP) 之 IR 光譜圖....34 3-4-2 有機無機混成肌酸酐(螢光)模版高分子之 IR 光譜圖比較.....37 3-4-3 有機無機混成肌酸酐螢光模版高分子之 NMR 圖譜.........38 3-4-4 有機無機混成肌酸酐(非)模版螢光高分子之表面結構影像.......40 3-4-5 有機無機混成肌酸酐(非)模版螢光高分子之螢光顯微圖像......43 3-5 有機無機混成肌酸酐模版高分子於肌酸酐吸附液對肌酸酐之吸附情形..45 3-5-1 於不同肌酸酐濃度之吸附效果.......................45 3-5-2 製備有機無機混成肌酸酐模版高分子 (MIP) 之前驅物比例......47 3-5-3 功能性單體不同比例對製備 MIP 之影響...................49 3-5-4 有機無機混成肌酸酐模版高分子 (MIP) 粒徑大小之探討....50 3-6 有機無機混成肌酸酐螢光模版高分子於肌酸酐吸附液對肌酸酐之吸附情形 ........51 3-6-1 於不同肌酸酐濃度之吸附效果.............51 3-6-2 有機無機混成肌酸酐螢光模版高分子於不同肌酸酐濃度中螢光變化.53 3-6-3 製備有機無機混成肌酸酐螢光模版高分子 (F-MIP) 之前驅物比例...56 3-6-4 功能性單體不同比例對製備 F-MIP 之影響...............57 3-6-5 有機無機混成肌酸酐螢光模版高分子 (F-MIP) 粒徑大小之探討....58 3-7 有機無機混成肌酸酐模版高分子於雙成份溶液中對肌酸酐選擇性吸附之 探討.....59 3-7-1 於 creatinine/ N-hydroxysuccinimide 雙成份溶液中肌酸酐之選擇吸附探討.....................................59 3-7-2 於 creatinine/ creatine 雙成份溶液中對肌酸酐之選擇吸附探討.......61 3-7-3 於 creatinine/ 2-pyrrolidinone 雙成份溶液中對肌酸酐之選擇性吸附探 討.........................................62 3-8 有機無機混成肌酸酐螢光模版高分子於雙成份溶液中對肌酸酐選擇性吸附之探討 ....63 3-8-1 於 creatinine/ N-hydroxysuccinimide 雙成份溶液中肌酸酐之選擇吸附探討................63 3-8-2 於 creatinine/ creatine 雙成份溶液中對肌酸酐之選擇性吸附探討......65 3-8-3 於 creatinine/ 2-pyrrolidinone 雙成份溶液中對肌酸酐選擇性吸附之探討................................66 3-9 有機無機混成肌酸酐(螢光)模版高分子於雙成份溶液中對肌酸酐選擇性之比較.......................................67 3-10 有機無機混成肌酸酐模版高分子於血清中對肌酸酐吸附能力之探討....68 3-10-1 於血清中吸附不同肌酸酐濃度之探討...........68 3-10-2 有機無機混成肌酸酐模版高分子於血清中對肌酸酐之模印效果.......70 3-11 有機無機混成肌酸酐螢光模版高分子於血清中對肌酸酐吸附之探討....72 3-11-1 於血清中吸附不同肌酸酐濃度之探討......................72 3-11-2 有機無機混成肌酸酐螢光模版高分子於血清溶液中對肌酸酐之模印效果.........74 第四章結論...................................76 參考文獻..................................78

    1. S. Narayanan, H.D. Appleton, Creatinine: A review. Clinical Chemistry, 1980, 26, 1119-1126.
    2. Bazari H. Approach to the patient with renal disease. In: Goldman L, Ausiello D, eds. Cecil Medicine. 23 rd ed. Philadelphia, Pa: Saunders Elsevier, 2007, chap 115.
    3. J.R. Delanghe, M.M. Speeckaert, Creatinine determination according to Jaffe—what does it stand for? Nephrology Dialysis Transplantation, 2011, 4, 83-86.
    4. A.K. Saenger, C. Lockwood, C.L. Snozek, T.C. Milz, B.S. Karon, M.G. Scott, A.S. Jaffe, Catecholamine Interference in enzymatic creatinine assays. Clinical Chemistry, 2009, 55, 1732-1736.
    5. A. Ramanavicius, Amperometric biosensor for the determination of creatine. Analytical and Bioanalytical Chemistry, 2007, 387, 1899-1906.
    6. J.A. Berberich, A. Chan, M. Boden, A.J. Russell, A stable three-enzyme creatinine biosensor. 3. Immobilization of creatinine amidohydrolase and sensor development. Acta Biomaterialia, 2005, 1, 193-199.
    7. 柯定賢,合成螢光單體以製備具螢光之模版高分子膜用於螢光式感測肌酸酐, 國立成功大學碩士論文, 2009.
    8. D.A. Skoog, F.J. Holler, S.R. Crouch, Principle of instrumental analysis, fifth edition, 355-376.
    9. G. Wulff, Selective binding to polymers via covalent bonds the construction of chiral cavities as specific receptor sites. Pure and Applied Chemistry, 1982, 54, 2093-2102.
    10. S.A. Piletsky, E.V. Piletskaya, T.L. Panasyuk, A.V. El'skaya, R. Levi, I. Karube, G. Wulff, Imprinted membranes for sensor technology: Opposite behavior of covalently and noncovalently imprinted membranes. Macromolecules, 1998, 31, 2137-2140.
    11. I.A. Nicholls, O. Ramström, K. Mosbach, Insights into the role of the hydrogen bond and hydrophobic effect on recognition in molecularly imprinted polymer synthetic peptide receptor mimics. Journal of Chromatography A, 1995, 691, 349-353.
    12. E. Yilmaz, K. Mosbach, K. Haupt, Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays. Analytical Communications, 1999, 36, 167-170.
    13. L.A. Barros, I. Martins, S. Rath, A selective molecularly imprinted polymer-solid phase extraction for the determination of fenitrothion in tomatoes. Analytical and Bioanalytical Chemistry, 2010, 397, 1355-1361.
    14. T. Jing, X.D. Gao, P. Wang , Y. Wang , Y.F. Lin, X.Z. Hu, Q.L. Hao, Y.K. Zhou, S.R. Mei, Determination of trace tetracycline antibiotics in foodstuffs by liquid chromatography–tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction. Analytical and Bioanalytical Chemistry, 2009, 393, 2099-2018.
    15. K. Hosoya, K. Yoshizako, N. Tanaka, K. Kimata, T. Araki, J. Haginaka, Uniform-size macroporous polymer-based stationary phase for HPLC prepares through molecular imprinting technique. Chemistry Letters, 1994, 1437-1438.
    16. K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata, T. Araki, N. Tanaka, J. Haginaka, Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography. Structural contribution of cross-linked polymer network on specific molecular recognition. Journal of Chromatography A, 1996, 728, 139-147.
    17. K.C. Ho, W.M. Yeh, T.S. Tung, J.Y. Liao, Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization. Analytica Chimica Acta, 2005, 542, 90-96.
    18. C. Sontimuang, R. Suedee, B. Canyuk, N. Phadoongsombut, F.L. Dickert, Development of a rubber elongation factor, surface-imprinted polymer–quartz crystal microbalance sensor, for quantitative determination of Hev b1 rubber latex allergens present in natural rubber latex products. Analytica Chimica Acta, 2011, 687, 184-192.
    19. A. Beltran, E. Caro, R.M. Marcé, P.A.G. Cormack, D.C. Sherrington, F. Borrull, Synthesis and application of a carbamazepine-imprinted polymer for solid-phase extraction from urine and wastewater. Analytica Chimica Acta, 2007, 597, 6-11.
    20. Y.P. Huang, Z.S. Liu, C. Zheng, R.Y. Gao, Recent developments of molecularly imprinted polymer in CEC. Electrophoresis, 2009, 30, 155-162.
    21. R. Suedee, T. Srichana, J. Saelim, T. Thavornpibulbut, Chiral determination of various adrenergic drugs by thin-layer chromatography using molecularly imprinted chiral stationary phases prepared with α-agonists. Analyst, 1999, 124, 1003-1009.
    22. J. Matsui, K. Akamatsu, S. Nishiguchi, D. Miyoshi, H. Nawafune, K. Tamaki, N. Sugimoto, Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. Analytical Chemistry, 2004, 76, 1310-1315.
    23. A. Tong, H. Dong, L. Li, Molecular imprinting-based fluorescent chemosensor for histamine using zinc(II)–protoporphyrin as a functional monomer. Analytica Chimica Acta, 2002, 466, 31-37.
    24. A.L. Graham, C.A. Carlson, P.L. Edmiston, Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT. Analytical Chemistry, 2002, 74, 458-467.
    25. M. Ahmad, R. Narayanaswamy, Optical fibre Al(III) sensor based on solid surface fluorescence measurement. Sensors and Actuators B-chemical, 2002, 81, 259-266.
    26. S. Korkut, B. Keskinler, E. Erhan, An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta, 2008, 76, 1147-1152.
    27. H.Y. Lee, B.S. Kim, Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube. Biosensors and Bioelectronics, 2009, 25,587-591.
    28. A. Ersöz, S.E. Diltemiz, A.A. Özcan, A. Denizli, R. Say, Synergie between molecular imprinted polymer based on solid-phase extraction and quartz crystal microbalance technique for 8-OHdG sensing. Biosensors and Bioelectronics,2008, 24, 742-747.
    29. C.A. Grimes, R.S. Singh, E.C. Dickey, O.K. Varghese, Metal–oxide films with magnetically-modulated nanoporous architectures. Journal of Materials Reserch, 2001, 16, 1686-1693.
    30. A.K. Patel, P.S. Sharma, B.B. Prasad, Electrochemical sensor for uric acid based on a molecularly imprinted polymer brush grafted to tetraethoxysilane derived sol-gel thin film graphite electrode. Materials Science and Engineering C, 2009, 29, 1545-1553.
    31. 許玉瑩,利用矽氧烷化合物製備分子拓印高分子,國立中央大學碩士論文, 2005.
    32. H.A. Tsai, M.J. Syu, Preparation of imprinted poly(tetraethoxysilanol) sol–gel for the specific uptake of creatinine. Chemical Engineering Journal, 2011, 168, 1369-1376.
    33. T.R. Ling, Y.Z. Syu, Y.C. Tasi, T.C. Chou, C.C. Liu, Size-selective recognition of catecholamines by molecular imprinting on silica–alumina gel. Biosensors and Bioelectronics, 2005, 21, 901-907.
    34. 張詠順, 許梅娟, 肌酸酐模版材料之製備及對肌酸酐之吸附探討, 國立成功大學碩士論文, 2006.
    35. H.A. Tsai, M.J. Syu, Synthesis of creatinine-imprinted poly(b-cyclodextrin) for the specific binding of creatinine. Biomaterials, 2005, 26, 2759-2766.
    36. Y.S. Chang, T.H. Ko, T.J. Hsu, M.J. Syu, Synthesis of an imprinted hybrid organic-inorganic polymeric sol-gel matrix toward the specific binding and isotherm kinetics investigation of creatinine. Analytical chemistry, 2009, 81, 2098-2105.
    37. 許庭榕,以分子模版技術用於螢光式與電化學阻抗式分析感測肌酸酐,國立成功大學碩士論文, 2009.
    38. T.J. Hsu, Z.K. Lin, M.J. Syu, Synthesis of recognition matrix from 4-methylamino-N-allylnaphthal-imide with fluorescent effect for the imprinting of creatinine. Analytical chemistry, 2010, 82, 8821-8829.
    39. J. Liu, H. Chen, Z. Lin, J.M. Lin, Preparation of surface imprinting polymer capped Mn-Doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Analytical chemistry, 2010, 82, 7380-7386.
    40. A.R. Khorrami, A. Rashidpur, Design of a new cartridge for selective solid phase extraction using molecularly imprinted polymers: Selective extraction of theophylline from human serum samples. Biosensors and Bioelectronics, 2009, 25, 647-651.
    41. S. Hajizadeh, H. Kirsebom, I.Y. Galaev, B. Mattiasson, Evaluation of selective composite cryogel for bromate removal from drinking water. Journal of Separation Science, 2010, 33, 1752-1759.
    42. G. Pan, Y. Zhang, X. Guo, C. Li, H. Zhang, An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosensors and Bioelectronics, 2010, 26, 976-982.
    43. R. Gao, J. Zhang, X. He, L.X. Chen, Y. Zhang, Selective extraction of sulfonamides from food by use of silica-coated molecularly imprinted polymer nanospheres. Analytical and Bioanalytical Chemistry, 2010, 398, 451-461.
    44. J. Tan, H.F. Wang, X.P. Yan, A fluorescent sensor array based on ion imprinted mesoporous silica. Biosensors and Bioelectronics, 2009, 24, 3316-3321.
    45. G. Jin, Y. Tang, Evaluation of a novel silica-supported sol–gel sorbent prepared by a surface molecular imprinting technique for the selective separation of estazolam from human plasma. Microchimica Acta, 2009, 165, 143-149.
    46. X. Jiang, W. Tian, C. Zhao, H. Zhang, M. Liu, A novel sol–gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A. Talanta, 2007, 72, 119-125.
    47. R.G.C. Silva, F. Augusto, Sol–gel molecular imprinted ormosil for solid-phase extraction of methylxanthines. Journal of Chromatography A, 2006, 1114, 216-223.
    48. C.I. Lin, A.K. Joseph, C.K. Chang, Y.C. Wang, Y.D. Lee, Synthesis of molecular imprinted organic–inorganic hybrid polymer binding caffeine. Analytica Chimica Acta, 2003, 481, 175-180.
    49. A. Olwill, H. Hughes, M. O'Riordain, P. McLoughlin, The use of molecularly imprinted sol–gels in pharmaceutical separations. Biosensors and Bioelectronics, 2004, 20, 1045-1050.
    50. J. Yu, L. Dong, C. Wu, L. Wu, J. Xing, Hydroxyfullerene as a novel coating for solid-phase microextraction fiber with sol–gel technology. Journal of Chromatography A, 2002, 978, 37-48.
    51. A.V. Navarro, A.S. Castillo, J.F.F. Sanchez, A.S. Carretero, R. Mallavia, A.F. Gutierrez, The development of a MIP-optosensor for the detection of monoamine naphthalenes in drinking water. Biosensors and Bioelectronics, 2009, 24, 2305-2311.
    52. Y. Fang, S. Yan, B. Ning, N. Liu, Z. Gao, F. Chao, Flow injection chemiluminescence sensor using molecularly imprinted polymers as recognition element for determination of maleic hydrazide. Biosensors and Bioelectronics, 2009, 24, 2323-2327.
    53. B. Rezaei, M.T. Jafari, R. Khademi, Selective separation and determination of primidone in pharmaceutical and human serum samples using molecular imprinted polymer-electrospray ionization ion mobility spectrometry (MIP-ESI-IMS). Talanta, 2009, 79, 669-675.
    54. ZB.B. Prasad, K. Tiwari, M. Singh, P.S. Sharma, A.K. Patel, S. Srivastava, Ultratrace analysis of uracil and 5-fluorouracil by molecularly imprinted polymer brushes grafted to silylated solid-phase microextraction fiber in combination with complementary molecularly imprinted polymer-based sensor. Biomedical Chromatography, 2009, 23, 499-509.
    55. A.K. Patel, P.S. Sharma, B.B. Prasad, Development of a creatinine sensor based on a molecularly imprinted polymer-modified sol-gel film on graphite electrode. Electroanalysis, 2008, 20, 2102-2112.
    56. R.Y. Hsieha, H.A. Tsaib, M.J. Syu, Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums. Biomaterials, 2006, 27, 1083-2089.
    57. H.A. Tsai, M.J. Syu, Synthesis and characterization of creatinine imprinted poly(4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor. Analytica Chimica Acta, 2005, 539, 107-116.

    無法下載圖示 校內:2027-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE