| 研究生: |
陳信龍 Chen, Sin-Long |
|---|---|
| 論文名稱: |
膠體粒子交互作用與單一高分子鏈構形變化之偵測與診斷 Probing and Diagnosis on Colloidal Interactions and Single Polymer Molecule Conformation Changes |
| 指導教授: |
魏憲鴻
Wei, Hsien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 誘導偶極 、螢光共振能量轉移 、微流變 、聚電解質 、界面活性劑 、蓬鬆-緊緻絨球轉變 、因氧化所致之絨球-延伸轉變 |
| 外文關鍵詞: | induced dipole, FRET, microrheology, polyelectrolyte, surfactant, coil-globule transition, oxidation-induced coil-stretch transition |
| 相關次數: | 點閱:94 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究膠體粒子間或單一高分子鏈間之交互作用力,且利用這些交互作用來製備自組裝。本論文分為三大部分:(一)添加次微米粒子輔助捕捉奈米粒子。(二)以追蹤粒子之微流變技術探討膠體粒子與高分子系統。(三)因擴散造成的濃度梯度影響質子化和氧化的程度之自組裝微奈米結構的導電高分子。
第三章我們演示了在交流電場作用下添加次微米膠體粒子有助於捕捉奈米粒子。這個捕捉的策略包含極化SiO2的粒子堆去產生巨大偶極矩,透過增強偶極之間的交互作用可被用來捕捉周圍布朗運動的奈米粒子。並且在施加較高的電場或者添加較多的SiO2粒子時這個巨大偶極矩輔助的捕捉效應會更加顯著。在第四章我們延伸上述的捕捉想法藉由目標分子ssDNA與發光的量子點(QDs)鍵結來促進螢光共振能量轉移(FRET)的產生。我們發現藉由捕捉QD的輔助下可以很快產生FRET的訊號,因為此捕捉可大大的消除因擴散所造成鍵結的不足。然而測量到FRET的訊號可能會因為ssDNA吸附在添加的SiO2粒子上而減小,這可藉一未添加SiO2粒子的QD-ssDNA混合液之蒸發來放大FRET訊號的實驗來証實。而我們也利用施加交流電渦流去集濃QD-DNA來促進ssNDA的捕捉,同時發現FRET的訊號能很快的產生。
本文的五到七章應用追蹤粒子之微流變技術,探討膠體粒子懸浮液和高分子溶液的系統。在第五章我們製備出漂浮在氣液界面上的膠體粒子的自組裝六角結構並且測量這些粒子的均方位移(MSD),我們發現粒子的均方位移隨著取樣時間的增加而不再呈現如一般布朗運動的線性增長,而是呈現指數鬆弛的行為,其原因是來自於粒子因熱擾動偏離平衡位置所致。在第六章我們施加交流電場於單一聚電解質多價鹽溶液中,探討交流電場對單一聚電解質構形變化的影響。我們發現在施加電場後追蹤粒子的均方位移會受交流電場所致之極化及流動效應(由電場梯度所造成)的干擾。故欲探討交流電場對單一聚電解質的影響須對以上因素量化評估並適當扣除。在第七章我們添加正離子型界面活性劑於帶負電的聚電解質溶液中來探討兩者間的交互作用。我們發現黏度呈現非單調的變化,暗示著單一聚電解質從膨脹到收縮的複雜構象變化,當中牽涉界面活性劑與聚電解質的複合物的形成,以及單一聚電解質與帶巨量正電荷的微胞間的強大靜電吸引力所致前者的收縮。
本論文的最後一部份,我們以少量水相的APS液珠滴入多量油相的純苯胺單體中合成聚苯胺。發現在此混合液珠的系統中,會有不同的微奈米聚苯胺結構生成。這些結構的不同是來自於APS在混合液珠中因擴散所造成的濃度梯度造成不同氧化程度的聚苯胺所導致其構象從絨球到延伸的轉變。此機制及轉變過程可藉由XPS測量亞胺對胺的比例來確認。且已被氧化的聚苯胺片段會因自身質子化而造成片段間具有靜電排斥力,此效應也會促進聚苯胺之絨球到延伸的轉變。
關鍵字:誘導偶極、螢光共振能量轉移、微流變、聚電解質、界面活性劑、蓬鬆-緊緻絨球轉變、因氧化所致之絨球-延伸轉變。
In this thesis, we study interactions occurring to colloidal and polymer systems and make use of these interactions to prepare their assembly. This thesis contains three lines: (i) dipole or flow assisted trapping of nanoparticles in AC fields, (ii) microrheological probing of colloidal and polymer systems, and (iii) spatially controlled oxidation and protonation of conducting polymers and their micro/nano assembly.
In Chapter 3, we demonstrate that the addition of micron-sized silica particles can be used to assist in trapping of nanoparticles under AC electric fields. The strategy involves the clustering of polarized silica microparticles to produce huge dipole moments that can be used to capture the surrounding Brownian nanoparticles through enhanced dipole-dipole interactions. This macrodipole-assisted trapping becomes more pronounced as higher fields are used or more silica particles are added. In Chapter 4, we extend the idea of the above trapping to promote fluorescence resonance energy transfer (FRET) generated by the binding of targeted ssDNA molecules to illuminated quantum dots (QDs). We find that FRET signals can quickly emerge with the assist of the trapping of QDs, as the trapping greatly eliminates binding deficiency caused by diffusion. However, the measured FRET signals could be diminished by the adsorption of ssDNA onto the added silica particles, as they can be amplified by simple evaporation of ssDNA-QD mixture without adding silica particles. We also apply AC electrokinetic microvortices to trap QD-conjugated DNA coils for facilitating the capture of ssDNA, and find that the FRET signals can quickly emerge due to this convection-assisted trapping.
In Chapters 5-7, we apply the particle-tracking microrheology technique to probe microstructures for colloidal suspensions and polymer solutions. In Chapter 5, we prepare hexagonal assembly of colloidal particles floating on the air-liquid interface and measure the mean-square displacement (MSD) of these particles. We find that the measured MSD does not grow linearly with the sampling time as in the usual random Brownian motion. Instead, it exhibits a slow exponential relaxation behavior due to thermal-noise-activated deviations from the particle equilibrium position. In Chapter 6, we make an attempt to study effects of AC fields on the conformation change of a single polyelectrolyte chain in the presence of multivalent salts. We find that inevitable AC polarization of probe particles and AC electrokinetic flow (due to field gradients) can significantly affect the MSD in the background solution. So such a study is impossible unless these AC effects are quantified and carefully subtracted. In Chapter 7, we add cationic surfactants into a negatively charged polyelectrolyte solution to study their interactions. The non-monotonic change in the solution viscosity found in the experiment seems to indicate complicated coil-globule transitions, involving formation of surfactant-polyelectrolyte complex and collapse of a polyelectrolyte chain due to strong electrostatic attraction with giant macroions formed by surfactant micelles.
In the last part of this thesis, we prepare polyaniline (PANI) by placing a water-like microdroplet of ammonium peroxydisulfate (APS) into a larger oil-like drop full of aniline monomers, and find distinct micro/nano structures of PANI in this compound-drop system. These structures are found to be attributed to different extents of oxidation-induced coil-stretch transition setup by spatial variations of the APS concentration, as confirmed by measuring the imine-to-amine ratio using X-ray photoelectron spectroscopy. This coil-stretch transition can be futher expedited by electrostatic repulsion between protonized PANI segments due to self protonation of APS.
Keywords: induced dipole, FRET, microrheology, polyelectrolyte, surfactant, coil-globule transition, oxidation-induced coil-stretch transition.
C. Laslau, Z. D. Zujovic, L. Zhang, G. A. Bowmaker, J. Travas-Sejdic, Morphological Evolution of Self-Assembled Polyaniline Nanostuctures Obtained by pH-stat Chemical Oxidation, Chemical Material., 2009, 21, pp. 954–962.
H. Morgan, N. G. Green, AC Electrokinetics:Colloids and Nanoparticle, Research Studies Press LTD., 2003.
J. S. Jan, V. Breedveld, Microrheological Study of Polyelectrolyte Collapse and Reexpansion in the Presence of Multivalent Counterions, Macromolecules, 2008, 41, pp. 6517-6522.
M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, D. A. Weitz, Electric-Field-Induced Capillary Attraction between Like-Charged Particles at Liquid Interfaces, Nature, 2002, 420, p.21.
M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, P. K. Wong, Active Manipulation of Quantum Dots using AC Electrokinetics, Journal Phyical Chemical C, 2009, 113, pp. 6561-6565.
N. Aubry, P. Singh, M. Janjua, S. Nudurupati, Micro-and Nanoparticles Self-Assembly for Virtually Defect-Free, Adjustable Monolayers, PNAS., 2008, 105, 10, pp. 3711-3714.
N. G. Green, A. Ramos, A. Gonzalez, H. Morgan, A. Castellanos, Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes. I. Experimental Measurements, Physical Review E, 2000, 61, pp. 4011-4018.
N. G. Green, A. Ramos, A. Gonzalez, H. Morgan, A. Castellanos, Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes. II. A Linear Double-Layer Analysis, Physical Review E, 2000, 61.pp. 4019-4028.
N. G. Green, A. Ramos, A. Gonzalez, H. Morgan, A. Castellanos, Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes. III. Observation of Streamlines and Numerical Simulation, Physical Review E, 2002, 66, p. 026305.
N. Pluncktaveesak, A. J. Konop, R. H. Colby, Viscosity of Polyelectrolyte Solutions with Oppositely Charged Surfactant, Journal Phyical Chemical B, 2003, 107, pp. 8166-8171.
S. Wang, H. C. Chang, Y. Zhu, Hysteretic Conformational Transition of Single Flexible Polyelectrolyte under Resonant AC Electric Polarization, Macromolecules, 2010, 43, pp. 7402-7405.
王政源,以移動界面法實現分子疏並應用其發展具標的分子診斷功能之一維奈米感測器,國立成功大學,碩士論文,2010。
林聖翔,應用粒子追蹤之微流變技術探討單一聚電解質分子鏈的構象變化與膠體交互作用,國立成功大學,碩士論文,2010。
陳虹瑤,自組裝微奈米聚苯胺結構及聚合組裝程序之現象觀察,國立成功大學,碩士論文,2010。
鄭仁浩,DNA分子於外加電場及流場下之運動行為的探討,國立成功大學,碩士論文,2010。