研究生: |
黃孜玗 Huang, Tzu-Yu |
---|---|
論文名稱: |
製程條件與上電極材料選擇對Metal/LaGdO3/Si金屬-氧化物-半導體電容之電特性研究 The Effects of Process Condition and Top Electrode Materials on the Electrical Properties of the Metal/LaGdO3/Si Capacitor |
指導教授: |
黃正亮
Huang, Cheng-Liang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | LaGdO3 、金氧半電容 、射頻磁控濺鍍法 |
外文關鍵詞: | LaGdO3, MOS capacitor, Sputter |
相關次數: | 點閱:48 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
LaGdO3 (LGO)有高介電常數、高能隙、低漏電流、熱穩定性佳等優點,且與矽之間有很高的導電帶能障(Conduction band offset)與價電帶能障(Valence band offset)。這些優異的特性使LGO薄膜有機會在邏輯電路、記憶體元件等領域取代現有材料。本研究以射頻磁控濺鍍法於矽基板上沉積LGO薄膜,並以電子束蒸鍍(E-beam evaporation)電極,形成金屬-氧化物-半導體(Metal-oxide-semiconductor, MOS)結構。並以此結構探討製程條件與上電極材料對元件之影響。
實驗第一部分探討薄膜後退火對薄膜特性的影響。退火的過程可以修補薄膜中的缺陷並改善結晶性。元件經過600 oC退火處理後漏電流可降低至1×10-9A以下(於電場強度1MV/cm時),且擁有較低的等效氧化層電荷密度。若提高退火溫度至700oC,漏電流密度與等效氧化層電荷密度皆會略微提高。
第二部分討論以濺鍍法沉積LGO薄膜時,通入氣體比例(Ar/O2)對薄膜以及元件特性的影響。由實驗結果得知沉積LGO薄膜時通入氣體比例
II
將明顯影響薄膜品質:在通入O2比例10%時,LGO薄膜可因獲得適度修補而呈現較佳介電特性;當通入O2比例大於20%時,濺鍍過程中未被解離的O2會使電漿的平均自由路徑降低,進而影響薄膜品質。
第三部分將討論金屬-氧化物-半導體電容中的上電極材料選擇與薄膜品質及元件特性之關係。本實驗中使用Al/LGO/Si、Ti/LGO/Si與Pt/Ti/LGO/Si等三種不同結構,以驗證上電極材料之對元件電特性的影響。由電容-電壓量測可明顯觀察到Al/LGO/Si元件所量測而得的等效電容值小於Ti/LGO/Si與Pt/Ti/LGO/Si。由TEM結果可觀察到Al/LGO介面存在約20 nm的AlOx界面層,導致以Al/LGO/Si元件電容值偏低。實驗更觀察到具有高度活性的Al、Ti金屬內部皆存在大量氧成分,推測Al、Ti金屬會與LGO薄膜產生反應,並吸收LGO薄膜所釋放出的氧離子,使LGO內部氧空缺增加。因此,Pt/Ti/LGO/Si元件較其他兩種樣品具有更少的氧化物缺陷密度以及邊界缺陷,同時降低漏電流密度的大小以及電容-電壓遲滯效應的影響。
Careful selection of process conditions was the key to influence interface quality in rare earth-based MOS gate. The first part of this study, post-annealing temperature of LGO thin-film was discussed. The equivalent dielectric constant and effective oxide charge of the LGO/Si stacks were both optimized by 600oC-annealing. The second part of this study, sputtering atmosphere Ar/O2 ratio was discussed. LGO film deposited in 10% oxygen ratio showed higher effective dielectric constant, smaller flat-band voltage shift, less effective oxide charge, and breakdown field > 5MV/cm. The third part of this study, different top electrodes was discussed. The clear interfacial layer (AlOx ~20nm) in Al/LGO interface was observed by TEM. The formation of the low-k (k~8.9) AlOx layer was considered not only reduce the dielectric constant but generate more defect. Instead, the influence of interfacial layer could be suppressed by using passive metal as top electrodes. For instance, Pt/Ti/LGO/Si structure showed higher dielectric constant 17.3, less effective oxide charge 6.55×10-11 C, and the hysteresis voltage was 32 mV which was comparable to the films deposited by PLD.
1. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (2nd ed) 1976.
2. T. DiStefano, and D. Eastman, "The band edge of amorphous SiO2 by photoinjection and photoconductivity measurements", Solid State Communications, 9 (1971) 2259-2261.
3. H.C. Lin, P. D. Ye, and G. D. Wilk, "Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs", Applied Physics Letters, 87 (2005) 182904.
4. Z. Habibah, et al., "Chemical solution deposited magnesium oxide films: Influence of deposition time on electrical and structural properties", Procedia Engineering, 56 (2013) 737-742.
5. C. Y. Tsay, C. H. Cheng, and Y. W. Wang, "Properties of transparent yttrium oxide dielectric films prepared by sol–gel process", Ceramics International, 38 (2012) 1677-1682.
6. H. Shimizu, et al., "Characterization of sol–gel derived and crystallized ZrO2 thin films", Japanese Journal of Applied Physics, 48 (2009) 101101.
7. A. Laha, H. J. Osten, and A. Fissel, "Impact of Si substrate orientations on electrical properties of crystalline Gd2O3 thin films for high-K application", Applied Physics Letters, 89 (2006) 143514.
8. J. H. Jun, et al., "Structural and electrical properties of a La2O3 thin film as a gate dielectric", Journal of Korea Physics Society, 41 (2002) 998-1002.
9. Z. J.Wang, et al., "Preparation of hafnium oxide thin films by sol–gel method", Journal of Electroceramics, 21 (2007) 499-502.
10. M. Alam, and D. Cameron, "Preparation and characterization of TiO2 thin films by sol-gel method", Journal of sol-gel science and technology, 25 (2002) 137-145.
11. C. H. Kao, et al., "Physical and electrical characteristics of the high-k Ta2O5 (tantalum pentoxide) dielectric deposited on the polycrystalline silicon", Applied Physics Letters, 96 (2010) 112901.
12. H. García, et al., "Influence of growth and annealing temperatures on the electrical properties of Nb2O5-based MIM capacitors", Semiconductor Science and Technology, 28 (2013) 055005.
13. S. P. Pavunny, et al., "Properties of the new electronic device material LaGdO3", physica status solidi (b), 251 (2014) 131-139.
14. J. Robertson, "High dielectric constant oxides", The European physical journal applied physics, 28 (2004) 265-291.
15. V. Narayanan, et al., "Interfacial oxide formation and oxygen diffusion in rare earth oxide–silicon epitaxial heterostructures", Applied physics letters, 81 (2002) 4183-4185.
16. A. Nazarov, et al., "Charge trapping in ultrathin Gd2O3 high-k dielectric", Microelectronic engineering, 84 (2007) 1968-1971.
17. A. R. Chaudhuri, et al., "Improving dielectric properties of epitaxial Gd2O3 thin films on silicon by nitrogen doping", Applied Physics Letters, 102 (2013) 022904.
18. K. Xu, et al., "Atomic layer deposition of Gd2O3 and Dy2O3: a study of the ALD characteristics and structural and electrical properties", Chemistry of Materials, 24 (2012) 651-658.
19. J. Gryglewicz, et al., "Characterization of thin Gd2O3 magnetron sputtered layers", in Electron Technology Conference 2013.
20. R. Sharma, and A. Rastogi, "Compositional and electronic properties of chemical-vapor-deposited Y2O3 thin film-Si(100) interfaces", Journal of applied physics, 74 (1993) 6691-6702.
21. A. Rastogi, and S. Desu, "Current conduction and dielectric behavior of high k Y2O3 films integrated with Si using chemical vapor deposition as a gate dielectric for metal-oxide-semiconductor devices", Journal of electroceramics, 13 (2004) 121-127.
22. A. Kuriyama, et al., "Effect of post-metallization annealing on electrical characteristics of La2O3 gate thin films", Japanese journal of applied physics, 44 (2005) 1045.
23. J. Ng, et al., "Effects of low temperature annealing on the ultrathin La2O3 gate dielectric; comparison of post deposition annealing and post metallization annealing", Microelectronic Engineering, 80 (2005) 206-209.
24. S. Ohmi, et al., "Rare earth metal oxide gate thin films prepared by E-beam deposition", in Gate Insulator 2001.
25. K. Tachi, et al., "Effect of oxygen for ultra-thin La2O3 film deposition", ECS Transactions, 3 (2006) 425-434.
26. L. Kim, et al., "Controllable capacitance–voltage hysteresis width in the aluminum–cerium-dioxide–silicon metal–insulator–semiconductor structure: Application to nonvolatile memory devices without ferroelectrics", Applied Physics Letters, 75 (2000) 1881-1883.
27. Y. Roh, K. Kim, and D. Jung, "The hysteresis caused by interface trap and anomalous positive charge in Al/CeO2–SiO2/silicon capacitors", Japanese journal of applied physics, 36 (1997) L1681.
28. K. Tagui, et al., "The electrical property of CeO2 films deposited by MOCVD on Si (100) annealing effects on the electrical property", Electrochemical and solid-state letters, 10 (2007) D73-D75.
29. C. Yuan, et al., "LaAlO3 nanocrystals embedded in amorphous Lu2O3 high-k gate dielectric for floating gate memory applicatio", Electrochemical and solid-state letters, 9 (2006) F53-F55.
30. M. Y. Chan, P. S. Lee, and V. Ho, "Formation of Ge nanocrystals in Lu2O3 high-k dielectric and its application in non-volatile memory device", in MRS Proceedings 2007.
31. S. Pavunny, et al., "Advanced high-k gate dielectric amorphous LaGdO3 gated metal-oxide-semiconductor devices with sub-nanometer equivalent oxide thickness", Applied physics letters, 102 (2013) 192904.
32. S. O. Kasap, Principles of electronic materials and devices. 2006.
33. 施敏、李明逵、曾俊元,半導體元件物理與製作技術:第三版,民國一0二年。
34. D. M. Fleetwood, "'Border traps' in MOS devices", IEEE transactions on nuclear science, 39 (1992) 269-271.
35. D. Fleetwood, et al., "Border traps: Issues for MOS radiation response and long-term reliability",Microelectronics Reliability, 35 (1995) 403-428.
36. W. C. Chin, K.Y. Cheong, and Z. Hassan, "Sm2O3 gate dielectric on Si substrate", Materials Science in Semiconductor Processing, 13 (2010) 303-314.
37. J. Robertson, "Electronic structure and band offsets of high-dielectric-constant gate oxides", MRS Bulletin, 27 (2002) 217-221.
38. K. Hubbard, and D. Schlom, "Thermodynamic stability of binary oxides in contact with silicon", Journal of Materials Research, 11 (1996) 2757-2776.
39. M. Leskelä, K. Kukli, and M. Ritala, "Rare-earth oxide thin films for gate dielectrics in microelectronics", Journal of Alloys and Compounds, 418 (2006) 27-34.
40. G. Scarel, A. Svane, and M. Fanciulli, "Scientific and technological issues related to rare earth oxides: An introduction", Rare earth oxide thin films, 106 (2007) 1-14.
41. S. Jeon, and H. Hwang, "Effect of hygroscopic nature on the electrical characteristics of lanthanide oxides (Pr2O3, Sm2O3, Gd2O3, and Dy2O3)", Journal of applied physics, 93 (2003) 6393-6395.
42. K. Kakushima, et al., "Rare earth oxides in microelectronics", Rare earth oxide thin films, 105 (2007) 345-365.
43. X. Zhao, et al., "Average electronegativity, electronic polarizability and optical basicity of lanthanide oxides for different coordination number", Physica B: Condensed Matter, 403 (2008) 1787-1792.
44. H. Iwai, et al., "Advanced gate dielectric materials for sub-100 nm CMOS", in Electron Devices Meeting 2002.
45. O. Engström, et al., "Navigation aids in the search for future high-k dielectrics: Physical and electrical trends", Solid-State Electronics, 51 (2007) 622-626.
46. S. P. Pavunny, et al., "Fabrication and electrical characterization of high-k LaGdO3 thin films and field effect transistors", ECS Transactions, 35 (2011) 297-304.
47. S. P. Pavunny, et al., "Optical properties of amorphous high-k LaGdO3 films and its band alignment with Si", Journal of Applied Physics, 111 (201) 044106.
48. S. P. Pavunny, et al., "Structural and electrical properties of lanthanum gadolinium oxide: ceramic and thin films for high-k application", Integrated Ferroelectrics, 125 (2011 44-52.
49. S. P. Pavunny, et al., "Advanced high-k dielectric amorphous LaGdO3 based high density metal-insulator-metal capacitors with sub-nanometer capacitance equivalent thickness", Applied Physics Letters, 102 (2013) 252905.
50. P. Misra, S.P. Pavunny, and R.S. Katiyar, "On the resistive switching and current conduction mechanisms of amorphous LaGdO3 films grown by pulsed laser deposition", ECS Transactions, 53 (2013) 229-235.
51. A. A. Demkov, and A. Navrotsky, Materials fundamentals of gate dielectrics 2005.
52. Y. B. Losovyj, et al., 'Comparison of n-type Gd2O3 and Gd-doped HfO2", Journal of Physics: Condensed Matter, 21 (2009) 045602.
53. G. Beskow, V. M. Goldschmidt, Geochemische Verteilungsgesetze der
Elemente, 1924.
54. S. P. Pavunny, et al., "Lanthanum gadolinium oxide: A new electronic device material for CMOS logic and memory devices", Materials, 7 (2014) 2669-2696.
55. J. Zheng, P. Cygan, and T. Jow, "Hydrous ruthenium oxide as an electrode material for electrochemical capacitors", Journal of the Electrochemical Society, 142 (1995) 2699-2703.
56. T. Kawanago, et al., "EOT of 0.62 nm and high electron mobility in La-silicate/Si structure based nMOSFETs achieved by utilizing metal-inserted poly-Si stacks and annealing at high temperature", IEEE Transactions on Electron Devices, 59 (2012) 269-276.
57. J. Lin, et al., "An investigation of capacitance-voltage hysteresis in metal/high-k/In0.53Ga0.47As metal-oxide-semiconductor capacitors", Journal of Applied Physics, 114 (2013) 144105.
58. J. Gudmundsson, and E. Thorsteinsson, "Oxygen discharges diluted with argon: dissociation processes", Plasma Sources Science and Technology, 16 (2007) 399.
59. C. C. Lin, et al., "Effect of non-lattice oxygen on ZrO2-based resistive switching memory", Nanoscale research letters, 7 (2012) 187.
60. M. Ismail, et al., "Forming-free bipolar resistive switching in nonstoichiometric ceria films", Nanoscale research letters, 9 (2014) 45.
61. L. Vandelli, et al., "Microscopic modeling of electrical stress-induced breakdown in poly-crystalline hafnium oxide dielectrics", IEEE Transactions on Electron Devices, 60 (2013) 1754-1762.
62. J. McPherson, V. Reddy, and H. Mogul, "Field-enhanced Si–Si bond-breakage mechanism for time-dependent dielectric breakdown in thin-film SiO2 dielectrics", Applied physics letters, 71 (1997) 1101-1103.
63. T. Das, et al., "Reliability and breakdown characteristics of HfO2-based GaAs metal-oxide-semiconductor capacitors with a thin Si interface laye", in Physical and Failure Analysis of Integrated Circuits (IPFA).
64. H. Kim, et al., "Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer", Journal of applied physics, 96 (2004) 3467-3472.
65. I. Jeon, et al., "A novel methodology on tuning work function of metal gate using stacking bi-metal layers" in Electron Devices Meeting 2004.
66. T. Kawamura, et al., "Analysis of the hysteresis behavior in poly-Si
TFTs using on-the-fly measurement", ECS transactions, 16 (2008) 103-108.
67. V. R. Rao, et al., "Hysteresis behavior in 85-nm channel length vertical n-MOSFETs grown by MBE", IEEE Transactions on Electron Devices, 43 (1996) 973-976.
68. A. Yokozawa, et al., "Oxygen vacancy with large lattice distortion as an origin of leakage currents in SiO2", in Electron Devices Meeting 1997.
69. K. Krishna, et al., "Potential rare earth modified CeO2 catalysts for soot oxidation: I. Characterisation and catalytic activity with O2", Applied Catalysis B: Environmental, 75 (2007) 189-200.
70. M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, "Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges", Surface Science Reports, 62 (2007) 219-270.
71. W. Chang, J. Chu, and S. Wang, "Resistive switching behavior of a thin amorphous rare-earth scandate: Effects of oxygen content", Applied Physics Letters, 101 (2012) 012102.
72. T. M. Pan, and C. H. Lu, "Switching behavior in rare-earth films fabricated in full room temperature", IEEE Transactions on Electron Devices, 59 (2012) 956-961.
73. S. Ramanathan, et al., "Effect of oxygen stoichiometry on the electrical properties of zirconia gate dielectrics", Applied Physics Letters, 79 (2001) 3311-3313.