簡易檢索 / 詳目顯示

研究生: 楊佳宜
Yang, Chia-I
論文名稱: 邊界元素法分析二維異向含孔洞之半無窮域在自重下之應力場
Boundary Element Analysis of Elastostatic Stresses on Holes/Voids in Semi-Infinite Anisotropic Plane Due to Self-Weight
指導教授: 夏育群
Shiah, Yui-Chuin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 111
中文關鍵詞: 邊界元素法二維異向靜彈性體體內力半無窮域
外文關鍵詞: Boundary Element Method, 2D anisotropic elasticity, Half-infinite plane, Body-force
相關次數: 點閱:19下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討二維異向性彈性材料於自重作用下之半無窮域應力場分布,採用邊界元素法(Boundary Element Method, BEM)為數值分析基礎,結合前人發展之體積力轉換公式與程式,建立具體可行之有限域建模策略。研究重點為評估有限域模型模擬半無窮域問題的可行性與準確性,並透過逐步放大模型尺寸與捨去部分區域,成功建立一套兼具效率與穩定性的簡化模型架構。
    在數值模擬方面,為驗證本簡化方法之可行性,設計多項範例進行驗證與探討,包含均布與非均勻平面載重、地基上建築物作用、多孔洞排列效應與孔洞襯砌材料設計等。模擬結果皆展現良好的穩定性與物理一致性,能準確反映幾何、材料與施力條件變化對孔洞周圍應力場之影響。綜合分析結果顯示,本研究所建構之有限域邊界元素模型不僅可有效模擬二維異向性材料在自重下之行為,亦具備作為模擬半無窮域分析之簡化模型。

    This study aims to investigate the stress field distribution in a two-dimensional anisotropic elastic half-infinite domain under self-weight. The Boundary Element Method (BEM) serves as the core numerical approach, combined with previously developed formulations and codes for body force conversion to establish a feasible finite-domain modeling strategy. The primary objective is to evaluate the feasibility and accuracy of using a finite-domain model to simulate half-infinite domain behavior. By gradually enlarging the model size and eliminating unnecessary regions, a simplified model framework with both computational efficiency and stability is successfully developed.
    To validate the proposed simplification method, several numerical examples are designed and analyzed, including uniform and non-uniform surface loading, structural loading on the ground surface, interactions between multiple circular holes, and lining material configurations. The simulation results exhibit good stability and physical consistency, accurately capturing the effects of geometry, material properties, and loading conditions on the circumferential stress distribution around holes. Overall, the proposed finite-domain BEM model demonstrates its effectiveness in simulating the behavior of anisotropic materials under self-weight and serves as a simplified and efficient alternative for half-infinite domain analysis.

    摘要 I Abstract III 致謝 XIII 目 錄 XIV 表目錄 XVI 圖目錄 XVII 符號 XX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 文獻回顧 5 1.4 研究內容簡介 6 第二章 理論回顧 8 2.1 二維異向靜彈性力學 8 2.2 邊界積分方程式 10 2.3 二維體內力邊界積分式 13 第三章 自重模擬分析與有限域建模 19 3.1基礎解與積分式轉換 19 3.1.1 半無窮域之基礎解 19 3.1.2 體內力邊界積分式轉換 27 3.2 有限域自重模擬分析與半無窮假設 30 3.2.1 網格可靠性驗證(有限域 vs 半無窮域) 30 3.2.2 有限域模型簡化與自重模擬 41 3.2.3 ANSYS結果比較 51 第四章 數值範例 58 4.1 範例一、參考面上平面負載 59 4.2 範例二、參考面上區塊載重 65 4.3 範例三、區域內部多孔洞 70 4.4 範例四、區域內部半圓孔多材料 76 4.5 範例五、半圓孔多材料與參考面上施加結構載重 80 第五章 結論與未來展望 87 參考文獻 88

    [1] C. V. Camp and G. S. Gipson, Boundary element analysis of nonhomogeneous biharmonic phenomena. Springer Science & Business Media, 2013.
    [2] A. Deb and P. Banerjee, "BEM for general anisotropic 2D elasticity using particular integrals," Communications in Applied Numerical Methods, vol. 6, no. 2, pp. 111-119, 1990.
    [3] D. Nardini and C. Brebbia, "A new approach to free vibration analysis using boundary elements," Applied mathematical modelling, vol. 7, no. 3, pp. 157-162, 1983.
    [4] D. Danson, "Linear isotropic elasticity with body forces," in Progress in Boundary Element Methods: Volume 2: Springer, 1983, pp. 101-135.
    [5] J. Zhang, C. Tan, and F. Afagh, "A general exact transformation of body-force volume integral in BEM for 2D anisotropic elasticity," Computational mechanics, vol. 19, no. 2, pp. 1-10, 1996.
    [6] Y. Shiah, "Analytical transformation of the volume integral in the boundary integral equation for 3D anisotropic elastostatics involving body force," Computer Methods in Applied Mechanics and Engineering, vol. 278, pp. 404-422, 2014.
    [7] N. Nikadat, M. Fatehi, and A. Abdollahipour, "Numerical modelling of stress analysis around rectangular tunnels with large discontinuities (fault) by a hybridized indirect BEM," Journal of Central South University, vol. 22, pp. 4291-4299, 2015.
    [8] H. Alielahi and M. Adampira, "Seismic effects of two-dimensional subsurface cavity on the ground motion by BEM: Amplification patterns and engineering applications," International Journal of Civil Engineering, vol. 14, pp. 233-251, 2016.
    [9] H. Alielahi and M. Adampira, "Site-specific response spectra for seismic motions in half-plane with shallow cavities," Soil Dynamics and Earthquake Engineering, vol. 80, pp. 163-167, 2016.
    [10] H. Alielahi and M. Adampira, "Effect of twin-parallel tunnels on seismic ground response due to vertically in-plane waves," International Journal of Rock Mechanics and Mining Sciences, vol. 85, pp. 67-83, 2016.
    [11] S. G. Lekhnitskii, "Anisotropic plates," 1968.
    [12] T. A. Cruse, Boundary element analysis in computational fracture mechanics. Springer Science & Business Media, 2012.
    [13] E. Pan and B. Amadei, "Stress concentration at irregular surfaces of anisotropic half-spaces," Acta mechanica, vol. 113, no. 1, pp. 119-135, 1995.
    [14] Z. Suo, "Singularities, interfaces and cracks in dissimilar anisotropic media," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 427, no. 1873, pp. 331-358, 1990.
    [15] C. Hwu, Anisotropic elastic plates. Springer Science & Business Media, 2010.
    [16] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity. Noordhoff Groningen, 1953.
    [17] Y. Shiah and S.-Y. Ye, "New treatment of the self-weight and the inertial effects of rotation for the BEM formulation of 2D anisotropic solids," Engineering Analysis with Boundary Elements, vol. 73, pp. 170-180, 2016.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE