| 研究生: |
陳丁源 Chen, Ting-Yuan |
|---|---|
| 論文名稱: |
應用於生醫領域之雙模式逐漸趨近式類比數位轉換器 A Dual-Mode Successive-Approximation-Register Analog-to-Digital Converter for Biomedical Application |
| 指導教授: |
劉濱達
Liu, Bin-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 類比數位轉換器 、逐漸趨近式類比數位轉換器 、電流模式 |
| 外文關鍵詞: | analog-to-digital converter, SAR ADC, current mode |
| 相關次數: | 點閱:109 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個適用於生醫領域之逐漸趨近式類比數位轉換器,可操作於電壓模式或電流模式,分別用來感測電壓或電流訊號。透過電容陣列切換的技巧,將電流分段取樣,使傳統之逐漸趨近式類比數位轉換器具備感測電流之能力。
本論文以低功率消耗為設計目標,電路之供應電壓為0.5 V,逐漸趨近式類比數位轉換器解析度為十位元,並使用分散式電容陣列與差動式控制電路取代傳統電容陣列與D型正反器降低電路功率消耗,此外,為了改善在低供應電壓下開關之線性度問題,採用了兩倍式靴帶式開關來提升開關線性度。
此設計以台灣積體電路公司0.18微米一層多晶矽六層金屬導線金氧半製程實現。根據模擬結果,在電壓模式時,取樣頻率為20 kHz下,噪訊比為60 dB而其整體功率消耗為63.44 nW,經換算此電路每次轉換所須能量為3.88 fJ;在電流模式時,取樣頻率為1 kHz下,電流之靈敏度可達1.18 pA。根據晶片量測結果,在電壓模式時,取樣頻率為20 kHz下,噪訊比為51.95 dB而其整體功率消耗為64.46 nW,經換算此電路每次轉換所須能量為9.94 fJ。
This thesis presents a successive-approximation-register analog-to-digital converter (SAR ADC) which can measure voltage and current. By the techniques of exchanging capacitor arrays and multi-sampling, SAR ADC is enabled to sense current. Therefore, a dual-mode SAR ADC for biomedical application is achieved.
Because of biomedical application, power consumption is critical for the proposed circuit. Consequently, supply voltage of the proposed circuit is reduced to 0.5 V, and split capacitor array and differential control logic are adopted in the proposed circuit to reduce power consumption. Besides, double-bootstrapped technique and stacked-transistor technique are used in switches to enhance conductivity and solve leakage problem.
The proposed dual-mode SAR ADC is implemented by TSMC 0.18-μm 1P6M CMOS process. According to simulation results, the peak SNDR is 60 dB with sampling frequency of 20 kHz in voltage mode. The power consumption is 63.44 nW and the Figure-of-Merit (FoM) is 3.88 fJ/conversion. In current mode, the sensitivity of 1.18 pA is achieved with sampling frequency of 1 kHz. The measurement results shows that the peak SNDR is 51.95 dB with sampling frequency of 20 kHz in voltage mode. The power consumption is 64.46 nW and the Figure-of-Merit (FoM) is 9.94 fJ/conversion.
[1] Y. Goa, Y. Zheng, S. Diao, W. D. Toh, C. W. Ang, M. Je, and C. H. Heng, “Low-power ultrawideband wireless telemetry transceiver for medical sensor applications,” IEEE Tans. Biomed. Eng., vol. 58, pp. 768–772, Mar. 2011.
[2] Y. L. Tsou and S. Berber, “Design, development and testing of a wireless sensor network for medical applications,” in Proc. IEEE Int. Conf. Wireless Commun. Mobile Comput., Jul. 2011, pp. 826–830.
[3] P. Kumar, S. G. Lee, and H. J. Lee, “A user authentication for healthcare application using wireless medical sensor networks,” in Proc. IEEE Int. Conf. High Performance Comput. Commun., Sept. 2011, pp. 647¬–652.
[4] D. Liu, S. Yin, J. Chen, H. Gao, and S. Wei, “A portable environmental monitoring system based on WSN for off-the-shelf sensors,” in Proc. IEEE Int. Conf. Comput. Problem-Solving, Oct. 2011, pp. 1¬–4.
[5] K. T. Tang, S. W. Chiu, H.C. Hao, S. C. Wei, T. H. Lin, C. M. Yang, D. J. Yao, and W. C. Yeh, “An electronic-nose sensor node based on polymer-coated surface acoustic wave array for environmental monitoring,” in Proc. IEEE Int. Conf. Green Circuits Syst., Jun. 2010, pp. 118¬–122.
[6] J. G. Webster, Medical Instrumentation Application and Design. New York: Wiley, 1998.
[7] D. Zhang, A. Bhide, and A. Alvandpour, “A 53-nW9.12-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices,” IEEE J. Solid-State Circuits, vol. 47, pp. 1585–1593, Jul. 2012.
[8] R. F. B. Turner, D. J. Harrison,, H. P. Baltes, “A CMOS potentiostst for amperometric chemical sensors,” IEEE J. Solid-State Circuits, vol. 22, pp. 473–478, Jun. 1987.
[9] K. Murari, M. Stanacevic, G. Cauwenberghs, and N. Thakor, “Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing,” IEEE Eng. Med. Biol. Mag., vol. 24, pp.23-29, Dec. 2005.
[10] T. C. Carusone, D. Johns, and K. Martin, Analog Integrated Circuit Design. New York: J. Willey & Sons, 2011, pp. 487–572.
[11] F. Maloberti, Data Converters. Dordrecht, Netherlands: Springer, 2010, pp. 1–59.
[12] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation. New York: IEEE Press, 1997, pp. 1–70.
[13] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York: IEEE Press, 2005, pp. 1–60.
[14] S. W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, pp. 2669–2680, Dec. 2006.
[15] B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC,” IEEE J. Solid-State Circuits, vol. 42, pp. 739–747, Apr. 2007.
[16] E. M. Avdikos, M. I. Prodromidis, and C. E. Efstathiou, “Construction and analytical applications of a palm-sized microcontroller-based amperometric analyzer,” Sensor. Actuator., B-Chem., vol. 107, pp. 372–378, May 2005.
[17] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, pp.731–740, Apr. 2010.
[18] T. C. Lu, L. D. Van, C. S. Lin, and C. M. Huang, “A 0.5 V 1 kS/s 2.5 nW 8.52-ENOB 6.8 fJ/conversion-step SAR ADC for biomedical application,” in Proc. IEEE Cust. Int. Circuits Conf., Sept. 2011, pp.1–4.
[19] H. Huang, K. Ao, Z. Guo, and Q. Li, “A 0.5V rate-resolution scalable SAR ADC with 63.7dB SFDR,” in Proc. IEEE Int. Symp. Circuit Syst., May 2013, pp.2030–2033.
[20] S. H. Shih, “A Voltammetry Potentiostat Based on a Successive-Approximation ADC for Biosensor Application,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R. O. C., 2013.
[21] R. Sekimoto, A. Shikata, K. Yoshioka, T. Kuroda, and H. Ishikuro, “A 0.5-V 5.2-fJ/conversion-step full asynchronous SAR ADC with leakage power reduction down to 650 pW by boosted self-power gating in 40-nm CMOS,” IEEE J. Solid-State Circuits,vol.48, pp.2628–2636, Nov. 2013.
[22] G. Y. Huang, S. J. Chang, C. C. Liu, Y. Z. Lin, “A 1-µW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications,” IEEE J. Solid-State Circuits, vol. 47, Nov. 2012.
[23] C. Y. Huang, “Design of a voltammetry potentiostat for biochemical sensors,”Analog Integr. Circ. Sig. Process, vol. 67, pp. 375–381, Jun. 2011.
[24] M. H. Nazari, H. Mazhab-Jafari, L. Leng, A. Guenther, and R. Genov, “CMOS neurotransmitter microarray: 96-Channel integrated potentiostat with on-die microsensors,” IEEE Trans. Biomed. Circuits Syst., vol. 7, pp. 338–348, Jun. 2013.
[25] C. Yang, Y. Huang, B. L. Hassler, R. M. Worden, and A. J. Mason, “Amperometric electrochemical microsystem for a miniaturized protein biosensor array,” IEEE Trans. Biomed. Circuits Syst., vol. 3, pp. 160–168, Jun. 2009.