簡易檢索 / 詳目顯示

研究生: 石源興
Shih, Yuan-Hsing
論文名稱: 整合感測器系統應用在醫藥領域的臨床前動物行為測量之研究
Study of Integrated Sensor System for Measurement of Animal Behavior in Preclinical Medicine Field
指導教授: 楊明興
Young, Ming-Shing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 56
中文關鍵詞: 抽搐觸控板加速度計震動微控制器跳躍站立移動行為震顫紅外線
外文關鍵詞: Accelerometer, vibration, locomotion, tremor, microcontroller, twitch, jumping, standing, infrared, touch-panel
相關次數: 點閱:152下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量測動物行為在生理學、心理學和藥理學的研究相當的重要,且移動和震動的行為已經廣泛的被用來描述和量化動物的活動狀態。過去二十年來,已經有許多論文探討,可在不同受測目標及量測參數狀況下,偵測動物行為模式之量測系統的發展。而過去這些系統無法達到最佳化量測大白鼠行為,其主要原因有:感測器的解析度不夠、高解析度的影像方法缺乏適當的照明、動物三維方向的運動不易量測。
    本研究發展出兩套新穎的程式監測系統,以量測大白鼠(rat)在不同環境下的多項參數活動。系統一是以觸控板(Touch-Panel)和紅外線(Infrared)模組組成,並以微控制器(microcontroller)為基礎,結合移動處理演算法程式來監測實驗中大白鼠的移動和站立活動。而以紅外線模組設計適當的分布在實驗箱內,可用來量測站立的行為。我們將發射和接收之紅外線模組設置在實驗箱的兩側,每個發射和接收之紅外線感測器間隔兩公分的距離,如此就足以偵測大白鼠的身體站立行為。
    另一個系統整合了加速度計(accelerometer)和數位影像系統,用來同時量測大白鼠的震動(vibration)和移動(locomotion)行為。其中個人電腦安裝影像擷取界面卡,並整合數位影像處理演算法來偵測實驗箱中動物精確的位置。以單晶片微處理器為基礎,並整合加速度計作為量測振動的子系統。其中加速度感測器模組直接黏貼在大白鼠除完毛後的正背面,用來偵測整個身體移動到微小震顫的廣泛振動參數。除了硬體之外,本研究亦撰寫相關的軟體程式來強化影像並做資料分析,如此可精確計算移動時的行為參數。如此,三種行為活動(移動、震動和站立)可做完整紀錄一小時的量測。
    本研究所發展的觸控板子系統之平面解析度已增強至 0.4 公分,而數位影像子系統之平面解析度也增強至 0.12 公分。由統計的變異數分析(ANOVA; P < 0.05)的結果,也可驗證實驗組和控制組之間有顯著的統計差異。觸控板和紅外線系統的主要優點是能同時紀錄大白鼠移動、跳躍和站立行為;而數位影像和加速度計系統則可同時紀錄移動和震動的行為參數。此兩系統都有下列優點:可提供快速設置並操作、價格低廉、減低環境的干擾和高的解析度。因此,此兩系統對於在藥學和醫學領域的研究人員是特別有應用價值的。

    Measuring animal behavior is essential in physiological, psychological and pharmacological research. Locomotor and vibration activities have been widely employed to characterize and quantify the behavioral states of animals. Over the past twenty years, there have been many reports describing the development of systems which can be used to detect animal behavioral patterns with different experimental objects and measurement parameters. Systems with the features described above are not optimal for measuring rat behavior for the following reasons. Firstly, the sensor resolution is insufficient. Secondly, though the video method possesses sufficient resolution capacity, it lacks suitable illumination. Thirdly, an animal’s 3D orientation or motion cannot be measured.
    This study developed two novel monitoring systems for measuring multiple parameters of rat activity. The first system consists of a touch-panel and infrared modules. It is based on an microcontroller and combined with a locomotion-processing algorithm for monitoring the locomotion and standing activities of the experimental rats. The infrared module was designed to fit within an experimental cage for measuring standing behavior. The infrared transmitter and receiver modules were set up on two sides of the experimental cage with 2-cm inter-transmitter and inter-receiver spacing to detect the standing rat’s body.
    The second system combines an integrated IC-type accelerometer and video camera system to measure the vibration and locomotion activities of rats simultaneously. A personal computer combines an image frame grabber and a digital image processing algorithm to detect the precise location of an animal in an experimental cage. An accelerometer-based subsystem for vibration measurement was designed based on an single-chip microprocessor. The acceleration sensor module was attached directly to the shaved back of the rat’s body to directly measure the animal’s vibration. This module can be used to detect a wide range of vibrations from movements of the entire body to micro-tremors. In addition to the hardware, this study also proposes some related algorithms for video enhancement and data analysis to precisely calculate the behavior parameters of a moving animal. By using this system, three behavioral activities (locomotion, vibration, and standing) can be measured over one hour.
    This study demonstrated an improved planar resolution of approximately 0.4 cm for touch-panel subsystem and 0.12 cm for digital image subsystem. From the results of variance analysis (ANOVA; P < 0.05) , it was proved that significant differences existed between the experimental and control groups. The major advantage of the touch-panel and infrared sensor system is its ability to record a rat’s locomotion, jumping and standing behaviors simultaneously. The primary merits of the accelerometer and video system are the ability to simultaneously record locomotion and vibrational data, the rapid set-up and operation, the low cost, the reduction of environmental noise and the high precision. The proposed systems will be especially useful to researchers in pharmaceutical and medical fields.

    Abstract (Chinese)………………………………………………….Ⅰ Abstract (English)…………………………………………… ……Ⅳ Acknowledgements (Chinese)…………………………..………….Ⅶ CONTENTS……………………………………………………………….Ⅷ List of table…………………………………………………………Ⅹ List of Figures…………………………………………………....XI CHAPTER 1. INTRODUCTION ……………………………….......1 CHAPTER 2. METHODS…………………………………………......6 2.1 Touch-Panel and Infrared System……………….……..6 2.1.1 Animals……………………………………..…….....6 2.1.2 System Structure and Microcontroller……......6 2.1.3 Touch-Panel…………………………….…….……...8 2.1.4 Infrared Sensor and Integration ……..…......11 2.1.5 Firmware and Software Design.…………….......13 2.1.6 Behavioral Parameters…………….…………….….17 2.2 Digital Image and Accelerometer System……….…...19 2.2.1 Animals…………………………………………….....19 2.2.2 System hardware……………………………….......19 2.2.3 Image processing software………………………...21 2.2.4 Vibration measurement………………………….…..23 2.2.5 Behavioral analysis…………………………….....27 CHAPTER 3. RESULTS………………………………….…………….30 3.1 Results of Touch-Panel and Infrared System…......30 3.1.1 Experimental Setup……………………………… ….30 3.1.2 Experimental Results……….……………... …...31 3.2 Results of Digital Image and Acelerometer System…37 3.2.1 Experimental Setup……………………………......37 3.2.2 Experimental Results………………………………..37 CHAPTER 4. DISCUSSION…..………..…………………………….43 4.1 Discussion of Touch-Panel and Infrared System.....43 4.2 Discussion of Digital Image and Accelerometer System…..…......................................45 CHAPTER 5. CONCLUSION………………………………………….…48 Reference……………………………………………………………..50 Vita (Chinese)……………………………………………………...56 List of tables Table 1. Effect of saline, amphetamine (Amphe.), and pentobarbital (Pento.) in-jections on Total Distance (TD), Resting Time (RT), Fine Movement Time (FMT), Gross Movement Time (GMT), Left Turning Angle (LTA), Right Turning Angle (RTA), Parallelism Index (PI) and Sinuosity (S). The analyses were grouped into 20 min periods following injection at 0 min.Each value represents the mean ±SD of 8 animals. …………………………………………………………………………….39 List of Figures Fig. 1: A block diagram of the touch-panel and the animal behavior measurement system. ………………………………………………………………………………………8 Fig. 2: The working principle of the touch-panel and transistor switching circuits………...9 Fig. 3: The AVR ATmega32L microcontroller system circuit……………………………..10 Fig. 4: A block diagram of the infrared transmitter and the receiver module………………12 Fig. 5: A flow chart of the AVR single-chip microcontroller firmware…………………....15 Fig. 6: Block diagram of the measurement system and photograph of a rat with an attached accelerometer……………………………………………………………...20 Fig. 7: Results of image processing………………………………………………………...23 Fig. 8: Schematic diagram of the accelerometer and signal decoding card circuitry……....25 Fig. 9: The LabVIEW diagram for analysis the vibration parameters………………….......27 Fig. 10: Statistical results for the control, darkness, blaze, and amphetamine groups recorded for an hour with regard to: (a) counts of jumping; (b) time of jumping; (c) counts of standing; (d) time of standing; (e) locomotion time; and (f) resting time. Each parameter has an error bar representing the mean ±SD of 4 animals…………………………………………………………....34 Fig. 11: Track picture of rats in (a) the amphetamine group and (b) the blaze group. ….…………………………………………………………………………..35 Fig. 12: A representative example of the time series and frequency spectrum of the acceleration during twitch, locomotion and tremor in control animals. The x-axis indicates the frequency up to 30 Hz, the z-axis indicates time in seconds, and the y-axis indicates the FFT calculation for each frequency value in an arbitrary unit……………………………………………………………40 Fig. 13: Effect of saline, amphetamine and pentobarbital solutions on a) twitch b) tremor and c) locomotor activity (LMA); analytic period = 10 min following injection at 0 min; each value is an error bar representing the mean ±SD of 8 animals. The x-axis indicates time, measured in minutes. The y-axis in (a) is the count, and the y-axis in (b,c) represents arbitrary units that indicates the power of each frequency derived by the FFT…………………………………………………………………………...42

    [1] M.E. Fritts, K. Mueller, L. Morris,” Locomotor
    stereotypy produced by dexbenzetimide and scopolamine
    is reduced by SKF 83566, not sulpiride,” Pharmacol
    Biochem & Behav, vol. 60, pp.639-644, 1998.
    [2] M.M. Ali, M. Bawari, U.K. Misra, G..N. Babu,”
    Locomotor and learning deficits in adult rats exposed
    to monosodium-L-glutamate during early life,”
    Neurosci Lett, vol. 284, pp.57-60, 2000.
    [3] O. K. Andrew, C. John, F. B. Charles,” A novel field
    activity detector to determine spatial and temporal
    movement of laboratory animals after injury and
    disease”, J Neurosci Methods, vol.57:330-336, 2006.
    [4] S.M. Brudzynski and S. Krol,” Analysis of locomotor
    activity in the rat: parallelism index, a new measure
    of locomotor exploratory pattern”, Physiol & Behav,
    vol. 62,pp. 635-642, 1997.
    [5] N. Kafkafi, C. Mayo, D. Drai, I. Golani, G.. Elmer,”
    Natural segmentation of the locomotor behavior of drug-
    induced rats in a photobeam cage,” J Neurosci
    Methods, vol. 109, pp.111-121, 2001.
    [6] S.D. Kao, F.Z. Shaw, M.S.Young, G.J. Jan,” A new
    automated method for detection and recording of animal
    moving path”, J Neurosci Methods, vol. 63, pp. 205-
    209, 1995.
    [7] J. Brodkin and J.F. Nash,”A novel apparatus for
    measuring rat locomotor behavior”, J
    Neurosci Methods, vol. 57, pp. 171-176, 1995.
    [8] J.R. Dijkstra, M.F. Meek, P.H. Robinson,
    Gramsbergen,“A Methods to evaluate functional nerve
    recovery in adult rats: walking track analysis, video
    analysis and the withdrawal reflex,”J Neurosci
    Methods, vol.96, pp.89-96, 2000.
    [9] W.H. Pan, C.R. Lee and L.H. Lim,” A new video path
    analyzer to monitor travel distance, rearing, and
    stereotypic movement of rats”, J Neurosci Methods,
    vol. 70, pp.39-43, 1996.
    [10] C.V. Vorhees, K.D. Acuff-Smith, D.R. Minck, R.E.
    Butcher,” A method for measuring locomotor behavior
    in rodents: contrast-sensitive computer-controlled
    video tracking activity assessment in rats”,
    Neurotoxicol Teratol, vol. 14, pp. 43-49, 1992.
    [11] S.C. Fowler, B.R. Birkestrand, R. Chen , S.J. Moss,
    E. Vorontsova, G. Wang , T.J. Zarcone, “A force-
    plate actometer for quantitating rodent behaviors:
    illustrative data on locomotion, rotation, spatial
    patterning, stereotypies, and tremor,” J Neurosci
    Methods, vol. 107, pp.107–124, 2001.
    [12] S.P.V. Arturn, F.M. Marcel, J.A.F. Antonio, A.B.
    Joao, M.S.C. Antonio,” Functional evaluation of
    peripheral nerve regeneration in the rat: walking track
    analysis,” J Neurosci Methods, vol.108, pp.1-9, 2001.
    [13] O. K. Andrew, C. John, F.B. Charles,” A novel field
    activity detector to determine spatial and temporal
    movement of laboratory animals after injury and
    disease,” J Neurosci Methods, vol.157, pp. 330-336,
    2006.
    [14]] J. Brodkin and J.F. Nash,” A novel apparatus for
    measuring rat locomotor behavior,” J Neurosci Methods,
    vol. 57, pp.171-76, 1995.
    [15] M.S. Young, C.W. Young, Y.C. Li,” A combined system
    for measuring animal motion activities,” J Neurosci
    Methods, vol.95, pp.55-63, 2000.
    [16] D. Jourdan, D. Ardid , A. Eschalier,” Automated
    behavioural analysis in animal pain studies”,
    Pharmacol Res, vol. 43(2), pp. 103-10, 2001.
    [17] M.T. Lin, J.J. Wang, M.S.Young,”The protective
    effect of dl-tetrahydropalmatine against the
    development of amygdala kindling seizures in rats”,
    Neurosci Lett,320(3), pp.113-116, 2002.
    [18] M.S. Young, C.W. Young, Y.C. Li,” A combined system
    for measuring animal motion activities,” J Neurosci
    Methods, vol.95, pp.55-63, 2000.
    [19] E.J. Someren, B.F. Vonk, W.A. Vonk, Speelman, J.D.
    Schuurman, P.R. Mirmiran, “ A new actigraph for long-
    term registration of the duration and intensity of
    tremor and movement,” IEEE Trans. Biomed. Eng.,
    vol.45, pp.386-395, 1998.
    [20] C.K. Haston, C.H Newcomb., K. Grant, R.P. Hill, J. V.
    Dyk,”Ultrasonic measurements of breathing rate in rats
    and computer assisted analysis”, J Radiat Oncol, Biol,
    Physics, vol. 27, pp. 651-657, 1993.
    [21] C.W. Young, M.S. Young. Y.C. Li, M.T. Lin,” A new
    ultrasonic method for measuring minute motion
    activities of rats”, J Neurosci Methods, vol. 70, 45-
    49, 1996.
    [22] S. Amano, M. Yokoyama, R. Torii, J. Fukuoka, K.
    Tanaka, N. Ihara, F. Hazama,“High performance seizure-
    monitoring system using a vibration sensor and
    videotape recording: behavioral analysis of genetically
    epileptic rats”, Lab Anim Sci, vol.47,pp. 317-320,1997.
    [23] P. S. Lloyd, P.D. Slade, J. P. Hatcher, J.J. Hagan,”
    A computer-controlled apparatus for measureing and
    analysing myoclonic jerk activity in guinea pigs”, J
    Neurosci Methods, vol. 64, pp.253-262, 1996.
    [24] E.J. Someren, B.F. Vonk, W.A. Vonk, Speelman, J.D.
    Schuurman, P.R. Mirmiran, “ A new actigraph for long-
    term registration of the duration and intensity of
    tremor and movement,” IEEE Trans. Biomed. Eng.,
    vol.45, pp.386-395, 1998.
    [25] R.C. Wagenaar, R.E. Emmerik,” Resonant frequencies
    of arms and legs identify different walking patterns”,
    J Biomechan, vol.33, pp.853-861, 2000.
    [26] V. Rajaraman, D. Jack, S.V. Adamovich, W. Henig, J.
    S.,”Hpoizner A novel quantitative method for 3D
    measurement of Parkinsonian tremor”, Clinic
    Neurophysiol, vol. 111, pp. 338-343, 2000.
    [27] Y.H. Shih, M.S. Young,” Integrated digital image and
    accelerometer measurements of rats locomotor and
    vibratory behaviour,” J Neurosci Methods, vol.166,
    pp.81-88, 2007.
    [28] Y.T. Chen, K.S Cheng, J.K. Liu, J.J. Huang,” An
    intelligent view box system for cephalometry,” IEEE
    Trans. Instrum. Meas., vol.54, pp.98-104, Feb. 2005.
    [29] M. Shiomi, T. Kanda, H. Ishiguro, N. Hagita,”
    Interactive Humanoid Robots for a Science Museum,”
    IEEE Trans. Intel. Syst., vol.22, pp.25-32, April
    2007.
    [30] B. Iske, B. Jager, U. Ruckert,” A ray-tracing
    approach for simulating recognition abilities of active
    infrared sensor arrays,” IEEE Sensors J., vol.4,
    pp.237-247, April 2004.
    [31] D.C. John, R. Amr, M. Eyasu,” Comparison of effects
    khat extract and amphetamine on motor behaviors in
    mice,”J, Ethnopharmacol,:vol.81, pp.65-71, 2002.
    [32] G. Sofia, P.M.F. John, “Pharmacological comparison
    between the actions of methamphetamine and l-aminoindan
    stereoisomers on sympathetic nervous function in rat
    vas deferens,” J. Pharmacol, vol.472, pp. 173-177,
    2003.
    [33] W.T. Chiu, L.S. Lin, M.T. Lin,” Antagonistic effects
    of lesions of paramedian reticular nucleus on
    amphetamine-induced locomotion and striatal dopamine
    release in rats,” Neurosci Res, vol.16, pp.311-314,
    1993.

    下載圖示 校內:立即公開
    校外:2008-07-21公開
    QR CODE