簡易檢索 / 詳目顯示

研究生: 吳登耀
Wu, Deng-Yau
論文名稱: 多階串級H橋式靜態同步補償器應用於配電系統之三相電壓不平衡改善
Improvement of Three-phase Voltage Unbalance in Distribution Systems Using a Multilevel Cascaded H-bridge Static Synchronous Compensator
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 148
中文關鍵詞: 配電系統配電變壓器U-V/V-V連接電壓不平衡多階串級H橋式靜態同步補償器
外文關鍵詞: Distribution systems, distribution transformer, U-V/V-V connection, voltage unbalance, multilevel cascaded h-bridge static synchronous compensator.
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣的配電系統供電給三相負載,為了節省成本而採用兩個單相變壓器繞組以U-V連接或V-V連接,以及三相負載分配不平衡等因素,導致系統產生嚴重的三相電壓不平衡,會造成額外的線路損失及降低交流馬達的運轉效率,對設備正常運轉的影響甚劇,也會使中性線電流增加導致接地電驛誤動作引起跳脫,因此本論文提出採用多階串級H橋式靜態同步補償器來改善配電系統三相電壓不平衡的特性。本論文系統架構一係以含風/太陽能再生能源之IEEE四節點之測試饋線,採用多階串級H橋式靜態同步補償器改善系統電壓不平衡,並與多種靜態同步補償器之效能比較。本論文系統架構二係以含風/太陽能再生能源之IEEE十三匯流排系統,採用多階串級H橋式靜態同步補償器改善系統電壓不平衡,並觀察對系統中再生能源所造成的影響。本論文由模擬結果驗證提出採用多階串級H橋式靜態同步補償器於改善配電系統三相電壓不平衡的可行性。

    The distribution systems in Taiwan generally use two single-phase transformers with the windings of U-V connection or V-V connection to supply three-phase loads due to cost savings. Such special winding connections can cause serious three-phase voltage imbalance that can also lead to the problems of the trip of ground relay, extra power losses of distribution lines, efficiency reduction of induction motors, etc. This thesis proposes a multilevel cascaded h-bridge static synchronous compensator (MLCHB-STATCOM) to improve the three-phase voltage unbalance in distribution systems. System configuration 1 is based on the IEEE 4-node test feeder under U-V winding connection of two single-phase transformers, unbalance of three-phase loads, and changes of transmission line ratio. System configuration 2 is based on the IEEE 13-bus feeder with PV/wind renewables under unequal loading on three phases and different winding connections of transformers. The MLCHB-STATCOM is proposed to reduce three-phase voltage unbalance and/or the power fluctuations caused by PV/wind renewables in the two studied systems. The simulation results show that the MLCHB-STATCOM can be used to effectively improve the three-phase voltage unbalance of the studied distribution systems.

    摘要...I Extended Abstract...II 誌謝...VIII 目錄...IX 表目錄...XIII 圖目錄...XVII 符號說明...XXIII 第一章 緒論...1 1-1 研究背景與動機...1 1-2 相關文獻回顧...3 1-3 本論文之貢獻...9 1-4 研究內容概述...10 第二章 三相電壓不平衡之探討...12 2-1 前言...12 2-2 三相電壓不平衡之成因...12 2-3 三相電壓不平衡之定義...14 2-4 三相電壓不平衡管制標準...15 2-5 三相電壓不平衡的影響...17 2-6 電壓不平衡改善方法...19 第三章 系統架構與數學模型...21 3-1 前言...21 3-2 系統架構...22 3-3 配電變壓器之模型...26 3-3-1 三具單相配電變壓器Y-Δ連接之模型...26 3-3-2 三具單相配電變壓器Δ-Δ連接之模型...27 3-3-3 二具單相配電變壓器U-V連接之模型...28 3-3-4 二具單相配電變壓器V-V連接之模型...29 3-4 鼠籠式轉子感應電動機之模型...30 3-5 太陽能陣列之模型...32 3-6 風渦輪機之模型...36 3-7 旋角控制器之模型...38 3-8 風渦輪機與發電機間轉矩之數學模型...40 3-9 雙饋式感應發電機之數學模型...41 3-10 電力電子轉換器之模型...44 3-10-1 太陽能陣列之模型...44 3-10-2 雙饋式感應發電機之轉子側轉換器...46 3-10-3 雙饋式感應發電機之電網側轉換器...47 第四章 多階串級H橋式靜態同步補償器於三相不平衡系統的應用...50 4-1 前言...50 4-2 系統架構...51 4-3 數學模型...52 4-3-1 正負序分離的方法...53 4-3-2 總直流電壓和虛功控制...55 4-3-3 群集平衡控制...56 4-3-4 單獨平衡控制...59 第五章 系統之模擬分析...60 5-1 前言...60 5-2 系統架構一之電壓不平衡分析...61 5-2-1案例A1:配電變壓器Tr2繞組為Y-Δ連接之電壓不平衡分析...61 5-2-2案例A2:配電變壓器Tr2繞組為U-V連接之電壓不平衡分析...72 5-2-3案例A3:改變系統傳輸線R/L比例與長度之電壓不平衡分析...78 5-2-4案例A4:負載不平衡之電壓不平衡分析...87 5-2-5案例A5:單相接地故障之電壓不平衡分析...92 5-3 系統架構二之電壓不平衡分析...99 5-3-1案例B1:負載不平衡之電壓不平衡分析...102 5-3-2案例B2:負載不平衡且改裝變壓器Tr1之電壓不平衡分析...111 5-3-3案例B3:負載不平衡且改裝變壓器Tr3之電壓不平衡分析...120 5-3-4案例B4:負載不平衡且同時改裝變壓器Tr1、Tr3之電壓不平衡分析...129 第六章 結論與未來研究方向...138 6-1 結論...138 6-2 未來研究方向...140 參考文獻...142 附錄 系統參數...147

    [1]H.-C. Chen, P.-H. Wu, C.-T. Lee, C.-W. Wang, C.-H. Yang, and P.-T. Cheng, “Zero-sequence voltage injection for DC capacitor voltage balancing control of the star-connected cascaded H-bridge PWM converter under unbalanced grid,” IEEE Trans. Industry Applications, vol. 51, no. 6, pp. 4584-4594, Nov./Dec. 2015.
    [2]C.-T. Lee, B.-S. Wang, S.-W. Chen, S.-F. Chou, J.-L. Huang, P.-T. Cheng, H. Akagi, and P. Barbosa, “Average power balancing control of a STATCOM based on the cascaded H-bridge PWM converter with star configuration,” IEEE Trans. Industry Applications, vol. 50, no. 6, pp. 3893-3901, Nov./Dec. 2014.
    [3]L. Maharjan, S. Inoue, H. Akagi, and J. Asakura, “State-of-charge (SOC)-balancing control of a battery energy storage system based on a cascade PWM converter,” IEEE Trans. Power Electronics, vol. 24, no. 6, pp. 1628-1636, Jun. 2009.
    [4]Y. Liang and C. O. Nwankpa, “A new type of STATCOM based on cascading voltage-source inverters with phase-shifted unipolar SPWM,” IEEE Trans. Industry Applications, vol. 35, no. 5, pp. 1118-1123, Sep./Oct. 1999.
    [5]Q. Song and W. Liu, “Control of a cascade STATCOM with star configuration under unbalanced conditions,” IEEE Trans. Power Electronics, vol. 24, no. 1, pp. 45-58, Jan. 2009.
    [6]H.-C. Chen, P.-H. Wu, C.-T. Lee, C.-W. Wang, C.-H. Yang, and P.-T. Cheng, “A flexible DC voltage balancing control based on the power flow management for star-connected cascaded H-bridge converter,” IEEE Trans. Industry Applications, vol. 52, no. 6, pp. 4946-4954, Nov./Dec. 2016.
    [7]H. Akagi, S. Inoue, and T. Yoshii, “Control and performance of a transformerless cascade PWM STATCOM with star configuration,” IEEE Trans. Industry Applications, vol. 43, no. 4, pp. 1041-1049, Jul./Aug. 2007.
    [8]N. Hatano and T. Ise, “Control scheme of cascaded H-bridge STATCOM using zero-sequence voltage and negative-sequence current,” IEEE Trans. Power Delivery, vol. 25, no. 2, pp. 543-550, Apr. 2010.
    [9]R. Xu, Y. Yu, R. Yang, G. Wang, D. Xu, B. Li, and S. Sui, “A novel control method for transformerless H-bridge cascaded STATCOM with star configuration,” IEEE Trans. Power Electronics, vol. 30, no. 3, pp. 1189-1202, Mar. 2015.
    [10]X. Rong, Y. Yong, W. Jian, Y. Rongfeng, X. Dianguo, C. He, Y. Yannan, and N. Ronggang, “Improved model predictive control for H-bridge cascaded STATCOM,” in Proc. 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, South Korea, Jun. 1-5, 2015, pp. 2545-2550.
    [11]I. R. Abdulveleev, T. R. Khramshin, and G. P. Kornilov, “Comparison of capacitor voltages balancing methods for cascaded H-bridge STATCOM,” in Proc. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Saint Petersburg, Russia, May 16-19, 2017, pp. 1-6.
    [12]Y. Neyshabouri, H. Iman-Eini, and M. Miranbeigi, “State feedback control strategy and voltage balancing scheme for a transformer-less static synchronous compensator based on cascaded H-bridge converter,” IET Power Electronics, vol. 8, no. 6, pp. 906-917, Jun. 2015.
    [13]J. A. Barrena, L. Marroyo, M. Á. R. Vidal, and J. R. T. Apraiz, “Individual voltage balancing strategy for PWM cascaded H-bridge converter-based STATCOM,” IEEE Trans. Industrial Electronics, vol. 55, no. 1, pp. 21-29, Jan. 2008.
    [14]C. Hochgraf and R. H. Lasseter, “STATCOM controls for operation with unbalanced voltages,” IEEE Trans. Power Delivery, vol. 13, no. 3, pp. 538-544, Apr. 1998.
    [15]Y. Xingwu, J. Jianguo, and L. Shichao, “A novel design approach of DC voltage balancing controller for cascaded H-bridge converter-based STATCOM,” in Proc. 2009 IEEE 6th International Power Electronics and Motion Control Conference (IPEMC'09), Wuhan, China, May 17-20, 2009, pp. 2359-2364.
    [16]J.-J. Jung, J.-H. Lee, S.-K. Sul, G. T. Son, and Y.-H. Chung, “DC capacitor voltage balancing control for delta-connected cascaded H-bridge STATCOM considering the unbalanced grid and load conditions,” in Proc. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, Sep. 18-22, 2016, pp. 1-8.
    [17]J. I. Y. Ota, Y. Shibano, and H. Akagi, “A phase-shifted PWM D-STATCOM using a modular multilevel cascade converter (SSBC)—Part II: zero-voltage-ride-through capability,” IEEE Trans. Industry Applications, vol. 51, no. 1, pp. 289-296, Jan./Feb. 2015.
    [18]V. Govindaraj and M. K. Elango, “Modular multilevel cascade converter based STATCOM for reactive power compensation,” in Proc. 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), Nagercoil, India, Mar. 20-21, 2013, pp. 467-473.
    [19]W. Song and A. Q. Huang, “Fault-tolerant design and control strategy for cascaded H-bridge multilevel converter-based STATCOM,” IEEE Trans. Industrial Electronics, vol. 57, no. 8, pp. 2700-2708, Aug. 2010.
    [20]H. Akagi, “Classification, terminology, and application of the modular multilevel cascade converter (MMCC),” IEEE Trans. Power Electronics, vol. 26, no. 11, pp. 3119-3130, Nov. 2011.
    [21]K. Sano and M. Takasaki, “A transformerless D-STATCOM based on a multivoltage cascade converter requiring no DC sources,” IEEE Trans. Power Electronics, vol. 27, no. 6, pp. 2783-2795, Jun. 2012.
    [22]江榮城,電力品質實務(一),台北市:全華科技圖書公司,民國八十九年五月。
    [23]王耀諄,電力品質,第二版,台北市:高立圖書公司,民國九十八年八月。
    [24]魏炫浚,三相感應機於不同操作情況下諧波阻抗之研究,國立雲林科技大學電機工程學系碩士論文,2007年6月。
    [25]S. J. Chapman, Electric Machinery Fundamentals, 4th ed., New York, NY, USA: McGraw-Hill, 2004.
    [26]P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 3rd ed., New York, NY, USA: John Wiley & Sons, 2013.
    [27]Implement PV array modules, [Online]. Available: http://www.mathworks.com/help/physmod/sps/powersys/ref/ pvarray.html, retrieved date: Apr. 11, 2017.
    [28]U. S. Patel, M. D. Sahu, and D. Tirkey, “Maximum power point tracking using perturb & observe algorithm and compare with another algorithm,” International Journal of Digital Application & Contemporary Research (IJDACR), vol. 2, no. 2, pp. 1-8, Sep. 2013.
    [29]Y. Shi, B. Liu, and S. Duan, “Eliminating DC current injection in current-transformer-sensed STATCOMs,” IEEE Trans. Power Electronics, vol. 28, no. 8, pp. 3760-3767, Aug. 2013.
    [30]S. Heier, Grid Integration of Wind Energy Conversion Systems, New York, NY, USA: John Wiley & Sons, 1998.
    [31]Y. H. A. Rahim and A. M. L. Al-Sabbagh, “Controlled power transfer from wind driven reluctance generator,” IEEE Trans. Energy Conversion, vol. 12, no. 4, pp. 275-281, Dec. 1997.
    [32]黃麗娟,太陽能電池分佈式最大功率點追蹤之設計與製作,中原大學電機工程學系碩士論文,民國一百年七月。
    [33]H. Rao, S. Xu, Y. Zhao, C. Hong, W. Wei, X. Li, J. Zhang, and Q. Song, “Research and application of multiple STATCOMs to improve the stability of AC/DC power systems in China Southern Grid,” IET Generation, Transmission & Distribution, vol. 10, no. 13, pp. 3111-3118, Oct. 2016.
    [34]A. Yazdani and R. Iravani, Voltage-Sourced Converters in Power Systems, New York, NY, USA: John Wiley & Sons, 2010.
    [35]曾聖然,考量電力系統電壓不平衡與驟降時靜態同步補償器之雛型設計與實作,國立清華大學電機工程學系碩士論文,2010年7月。
    [36]劉威盛,配電型靜態同步補償器應用於變壓器U-V/V-V連接之電壓不平衡改善,國立成功大學電機工程學系碩士論文,2016年7月。
    [37]盧修宇,採用多階靜態同步補償器於配電系統電壓不平衡改善之分析,國立成功大學電機工程學系碩士論文,2017年7月。
    [38]M. Hagiwara, R. Maeda, and H. Akagi, “Negative-sequence reactive-power control by a PWM STATCOM based on a modular multilevel cascade converter (MMCC-SDBC),” IEEE Trans. Power Electronics, vol. 27, no. 6, pp. 720-729, Mar./Apr. 2012.
    [39]B. Gultekin and M. Ermis, “Cascaded multilevel converter-based transmission STATCOM: System design methodology and development of a 12 kV ±12 MVAr power stage,” IEEE Trans. Power Electronics, vol. 28, no. 11, pp. 4930-4950, Nov. 2013.
    [40]G. Farivar, B. Hredzak, and V. G. Agelidis, “Reduced-capacitance thin-film H-bridge multilevel STATCOM control utilizing an analytic filtering scheme,” IEEE Trans. Industrial Electronics, vol. 62, no. 10, pp. 6457-6468, Oct. 2015.
    [41]Y. Zhang, X. Wu, X. Yuan, Y. Wang, and P. Dai, “Fast model predictive control for multilevel cascaded H-bridge STATCOM with polynomial computation time,” IEEE Trans. Industrial Electronics, vol. 63, no. 8, pp. 5231-5243, Aug. 2016.
    [42]S. Oki and H. Kakigano, “DC capacitor voltage regulation of modular multilevel cascade converter (MMCC-SSBC) for DC-powered data center,” in Proc. 2015 IEEE International Telecommunications Energy Conference (INTELEC), Osaka, Japan, Oct. 18-22, 2015, pp. 1-6.
    [43]Z. He, F. Ma, Q. Xu, Y. Chen, C. Li, M. Li, J. M. Guerrero, and A. Luo, “Reactive power strategy of cascaded delta-connected STATCOM under asymmetrical voltage conditions,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 2, pp. 784-795, Jun. 2017.
    [44]C. D. Townsend, T. J. Summers, and R. E. Betz, “Phase-shifted carrier modulation techniques for cascaded H-bridge multilevel converters,” IEEE Trans. Industrial Electronics, vol. 62, no. 11, pp. 6684-6696, Nov. 2015.
    [45]Y. Shi, B. Liu, Y. Shi, and S. Duan, “Individual phase current control based on optimal zero-sequence current separation for a star-connected cascade STATCOM under unbalanced conditions,” IEEE Trans. Power Electronics, vol. 31, no. 3, pp. 2099-2110, Mar. 2016.
    [46]A. O. Ibrahim, T. H. Nguyen, D. C. Lee, and S. C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-882, Sep. 2011.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE