簡易檢索 / 詳目顯示

研究生: 張富毓
Chang, Fu-Yu
論文名稱: 基於立體指叉式微電極之子宮頸癌細胞電特性分析
Electrical Properties of HeLa Cells Based on 3D Interdigitated Microelectrode Array
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 62
中文關鍵詞: 電阻抗頻譜立體指叉式微電極微粒子高靈敏度生物傳感器多 細胞電阻抗傳感器等效電路子宮頸癌細胞細胞膜電容細胞質電阻
外文關鍵詞: electrical impedance spectroscopy (EIS), three-dimensional (3D) interdigitated microelectrode (IME), microparticles, highly sensitive biosensor, multiple-cell impedance biosensor (MCIB), equivalent circuit model (ECM), HeLa cells, membrane capacitance, cytoplasm resistance
相關次數: 點閱:201下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞阻抗分析被廣泛地應用於監測生物與藥物反應,而本研究利用微影、電鑄技術製備一個高靈敏度、高深寬比的立體指叉式微電極於聚醯亞胺軟式電路板上,用以細胞檢測。先經由立體有限元素方法的模擬,來比較立體與平面指叉電極的效能,來決定電極設計,用乳膠微粒子浸泡於細胞培養液(DMEM)來模擬細胞,免除活細胞在代謝、生長、凋亡對阻抗量測的影響,避免這些生化現象對電極靈敏度的干擾,捕捉不同數量的微粒子於電極上進行阻抗量測。立體指叉式微電極可使微粒子排列於電極間隙,而不在電極上,可避免由微粒子位置所造成的干擾。以量測的結果來看,立體指叉式微電極的靈敏度至少比平面指叉式微電極高五倍,且阻抗趨勢隨著微粒子數量增加而增加,與等效電路模擬結果相符。最後,利用500 kHz處之阻抗與微粒子數量之回歸線(拋物線)來預測微粒子數量,69顆微粒子的阻抗量測值為1269 Ω,用回歸線預測結果為68顆,準確率為98.6%。
    經過量測微粒子證明立體指叉式微電極有較優異的靈敏度後,在本研究中也用此電極當成多細胞電阻抗傳感器,藉此量測分析細胞的電特性。細胞電特性,如細胞膜電容與細胞質電阻,可提供許多訊息來研究細胞膜與細胞質所發生的變化,且不需複雜的生化檢測。本研究提供一個分析方法以此多細胞電阻抗傳感器配合等效電路來提取細胞電特性,子宮頸癌細胞可快速、簡單地被此立體指叉式微電極與SU-8做成的柱子捕捉並排列於電極間隙,無細胞定位上的困擾。實驗結果證明了等效電路的準確性與有效性,且顯示了本傳感器在460 kHz附近對子宮頸癌細胞有最佳靈敏度;藉由所呈現的細胞電特性提取方法,成功地從52顆子宮頸癌細胞中得到細胞膜電容與細胞直電阻,並且將其值代入等效電路模型中,來模擬預測15、29、78、98顆子宮頸癌細胞的電阻抗,模擬預測的阻抗與實際量測值之間最大誤差在阻抗振幅只有3.06%,而在相位只有4.67%。這證明了可由細胞電特性來辨別細胞數量,也同時證明了用多細胞傳感器與等效電路來求得細胞電特性的可行性。

    Cell impedance analysis is widely used for monitoring biological and medical reactions. In this study, a highly sensitive three-dimensional (3D) interdigitated microelectrode (IME) with a high aspect ratio on a polyimide (PI) flexible substrate was fabricated for microparticles detection using electroforming and lithography technology. 3D finite element simulations were performed to compare the performance of the 3D IME (in terms of sensitivity and signal-to-noise ratio) to that of a planar IME for microparticles in the sensing area. Various quantities of microparticles were captured in Dulbecco’s modified Eagle medium (DMEM) and their impedances were measured. With the 3D IME, the microparticles were arranged in the gap, not on the electrode, avoiding the noise due to particle position. For the maximum particle quantities, the results show that the 3D IME has at least 5-fold higher sensitivity than that of the planar IME. The trends of impedance magnitude and phase due to particle quantity were verified using the equivalent circuit model (ECM). The impedance (1269 Ω) of 69 microparticles was used to estimate the particle quantity (68 microparticles) with 98.6% accuracy using a parabolic regression curve at 500 kHz.
    After proofing the advantage of 3D IME on sensitivity, this study also proposes the use of electric cell-substrate impedance sensing (ECIS) to detect the electrical properties of cells by the 3D-IME. The membrane capacitance (Cc) and cytoplasm resistance (Rc) can provide the information required to investigate changes in the membrane and cytoplasm without the need for complex chemical biochemical detection. The proposed method was used to analyze the electrical properties of a multiple-cells impedance biosensor (MCIB) and the application of an ECM by using the 3D IME. HeLa cells were quickly captured at the gap of the electrodes without cellular localization because of the presence of SU-8 columns and the 3D IME. In order to understand the impedance measured with the 3D IME, the ECM was used to analyze the impedance spectrum. The experimental results validated the accuracy and validity of the model, and the sensor with the best sensitivity for HeLa cells was found at 460 kHz. The normalized Rc and Cc were calculated by measuring 52 HeLa cells. The simulation results using Rc, Cc and the ECM successfully forecasted the impedance magnitudes and phases for 15, 29, 78, and 98 HeLa cells. The comparison of the simulation results and the measurement results showed that the maximum average errors in magnitude and phase were only 3.06% and 4.67%, respectively, which suggests that the number of HeLa cells can be classified based on their electrical properties. It also validates the feasibility for using the proposed multiple-cells sensor and the ECM to evaluate the cellular electrical properties.

    CONTENT ABSTRACT (CHINESE)…I ABSTRACT (ENGLISH)…III ACKNOWLEDGEMENT…VI CONTENT…VIII LIST OF TABLES…X LIST OF FIGURES…XI CHAPTER 1 INTRODUCTION…1 1.1 Back ground and motivation…1 1.2 Organization of thesis…4 CHAPTER 2 SENSOR DESIGN AND FABRICATION…7 2.1 Sensor Design…7 2.2 3D-IMEA Fabrication…11 2.3 Microfluidic Channel Fabrication…16 2.4 Composition of Electroforming Bath…17 2.5 Nodule and Metal Stress…18 2.6 Scale of The Sensor…19 CHAPTER 3 EQUIVALENT CIRCUIT MODEL AND EXTRACTION METHOD…23 3.1 Equivalent Circuit Model (ECM)…23 3.2 Extraction Method…27 CHAPTER 4 EXPERIMENTAL SETUP AND MATERIALS…28 4.1 Experimental Setup…28 4.2 Materials…30 CHAPTER 5 RESULTS AND DISCUSSIONS…32 5.1 Impedance and Quantity of Latex Microparticles…32 5.2 Sensitivity for Latex Microparticles…35 5.3 Particle Quantity Effect on Impedance Magnitude and Phase…38 5.4 Particle Quantity Estimate…39 5.5 ECIS Results of 52 HeLa Cells…42 5.6 Analysis of the Electrical Properties of Cells…44 5.7 Cell Impedance Forecast…46 5.8 Linear Regression…48 5.9 Applications of 3D-IMEA in Future…49 CHAPTER 6 CONCLUSIONS…53 REFERENCE…56 PUBLICATIONS…59

    Reference
    1. Linderholm, P., J. Vannod, Y. Barrandon, and P. Renaud, Bipolar resistivity profiling of 3D tissue culture. Biosens Bioelectron, 2007. 22(6): p. 789-96.
    2. Arias, L.R., C.A. Perry, and L. Yang, Real-time electrical impedance detection of cellular activities of oral cancer cells. Biosens Bioelectron, 25(10): p. 2225-31, 2010.
    3. Han, A. and A.B. Frazier, Ion channel characterization using single cell impedance spectroscopy. Lab Chip, 6(11): p. 1412-4, 2006.
    4. Hong, J., K. Kandasamy, M. Marimuthu, C.S. Choi, and S. Kim, Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study. Analyst, 136(2): p. 237-45, 2011.
    5. Reitinger, S., J. Wissenwasser, W. Kapferer, R. Heer, and G. Lepperdinger, Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells. Biosens Bioelectron, 34(1): p. 63-9, 2012.
    6. Qureshi, A., A. Pandey, R.S. Chouhan, Y. Gurbuz, and J.H. Niazi, Whole-cell based label-free capacitive biosensor for rapid nanosize-dependent toxicity detection. Biosens Bioelectron, 67: p. 100-6, 2015.
    7. Radke, S.M. and E.C. Alocilja, Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE SENSORS JOURNAL, 4(4): p. 434-440, 2004.
    8. Ghosh Dastider, S., S. Barizuddin, M. Dweik, and M.F. Almasri, Impedance biosensor based on interdigitated electrode array for detection of E. coli O157:H7 in food products, 8369: p. 83690Q-83690Q-7, 2012.
    9. Zheng, Y., E. Shojaei-Baghini, C. Wang, and Y. Sun, Microfluidic characterization of specific membrane capacitance and cytoplasm conductivity of single cells. Biosens Bioelectron, 42: p. 496-502, 2013.
    10. Chiang, Y., L.-S. Jang, S.-L. Tsai, M.-K. Chen, and M.-H. Wang, Impedance Analysis of Single Melanoma Cells in Microfluidic Devices. Electroanalysis, 26(10): p. 2129-2137, 2014.
    11. Jang, L.S. and M.H. Wang, Microfluidic device for cell capture and impedance measurement. Biomed Microdevices, 9(5): p. 737-43, 2007
    12. Tsai, S.-L., M.-H. Wang, M.-K. Chen, and L.-S. Jang, Analytical and Numerical Modeling Methods for Electrochemical Impedance Analysis of Single Cells on Coplanar Electrodes. Electroanalysis, 26(2): p. 389-398, 2014.
    13. Wang, J.W., M.H. Wang, and L.S. Jang, Effects of electrode geometry and cell location on single-cell impedance measurement. Biosens Bioelectron, 25(6): p. 1271-6, 2010.
    14. Wang, M.H. and W.H. Chang, Effect of Electrode Shape on Impedance of Single HeLa Cell: A COMSOL Simulation. Biomed Res Int, 2015: p. 871603, 2015.
    15. Yang, L., Y. Li, C.L. Griffis, and M.G. Johnson, Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens Bioelectron, 19(10): p. 1139-47, 2004.
    16. Wang, L., L. Wang, H. Yin, W. Xing, Z. Yu, M. Guo, and J. Cheng, Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip. Biosens Bioelectron, 25(5): p. 990-5, 2010.
    17. Thakur, M., K. Mergel, A. Weng, S. Frech, R. Gilabert-Oriol, D. Bachran, M.F. Melzig, and H. Fuchs, Real time monitoring of the cell viability during treatment with tumor-targeted toxins and saponins using impedance measurement. Biosens Bioelectron, 35(1): p. 503-6, 2012.
    18. Lei, K.F., M.H. Wu, C.W. Hsu, and Y.D. Chen, Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Biosens Bioelectron, 51: p. 16-21, 2014.
    19. Varshney, M. and Y. Li, Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosens Bioelectron, 24(10): p. 2951-60, 2009.
    20. Singh, K.V., A.M. Whited, Y. Ragineni, T.W. Barrett, J. King, and R. Solanki, 3D nanogap interdigitated electrode array biosensors. Anal Bioanal Chem, 397(4): p. 1493-502, 2010.
    21. Couniot, N., D. Flandre, L.A. Francis, and A. Afzalian, Signal-to-noise ratio optimization for detecting bacteria with interdigitated microelectrodes. Sensors and Actuators B: Chemical, 189: p. 43-51, 2013.
    22. Bratov, A., J. Ramon-Azcon, N. Abramova, A. Merlos, J. Adrian, F. Sanchez-Baeza, M.P. Marco, and C. Dominguez, Three-dimensional interdigitated electrode array as a transducer for label-free biosensors. Biosens Bioelectron, 24(4): p. 729-35, 2008.
    23. Bäcker, M., F. Kramer, C. Huck, A. Poghossian, A. Bratov, N. Abramova, and M.J. Schöning, Planar and 3D interdigitated electrodes for biosensing applications: The impact of a dielectric barrier on the sensor properties. physica status solidi (a), 211(6): p. 1357-1363, 2014.
    24. Jungreuthmayer, C., G.M. Birnbaumer, J. Zanghellini, and P. Ertl, 3D numerical simulation of a lab-on-a-chip--increasing measurement sensitivity of interdigitated capacitors by passivation optimization. Lab Chip, 11(7): p. 1318-25, 2011.
    25. Huh, D., G.A. Hamilton, and D.E. Ingber, From 3D cell culture to organs-on-chips. Trends Cell Biol, 21(12): p. 745-54, 2011.
    26. Lei, K., Review on Impedance Detection of Cellular Responses in Micro/Nano Environment. Micromachines, 5(1): p. 1-12, 2014.
    27. Chang, F.-Y., M.-H. Wang, M.-K. Chen, and L.-S. Jang, Smooth Heating Effect Using Multi-axes Alternating Electromagnetic Fields on Magnetic Thermotherapy. International Symposim on Nano Science and Technology, 2012.
    28. Ke, Y.L., F.Y. Chang, M.K. Chen, S.L. Li, and L.S. Jang, Influence of electromagnetic signal of antibiotics excited by low-frequency pulsed electromagnetic fields on growth of Escherichia coli. Cell Biochem Biophys, 67(3): p. 1229-37, 2013.
    29. Denzi, A., C. Merla, C. Palego, A. Paffi, Y. Ning, C.R. Multari, X. Cheng, F. Apollonio, J.C.M. Hwang, and M. Liberti, Assessment of Cytoplasm conductivity by nanosecond pulsed electric fields. IEEE Transactions on Biomedical Engineering, 62(6): p. 1595-1603, 2015.
    30. Zhang, Z., P. Zhao, G. Xiao, B.R. Watts, and C. Xu, Sealing SU-8 microfluidic channels using PDMS. Biomicrofluidics, 5(4): p. 46503-465038, 2011.
    31. Patel, J.N., B.L. Gray, B. Kaminska, N.-C. Wu, and B.D. Gates, SU-8- and PDMS-based hybrid fabrication technology for combination of permanently bonded flexible and rigid features on a single device. Journal of Micromechanics and Microengineering, 23(6): p. 065029, 2013.
    32. Mondal, D., C. Roychaudhuri, L. Das, and J. Chatterjee, Microtrap electrode devices for single cell trapping and impedance measurement. Biomed Microdevices, 14(5): p. 955-64, 2012.
    33. Couniot, N., A. Afzalian, N. Van Overstraeten-Schlögel, L.A. Francis, and D. Flandre, Capacitive biosensing of bacterial cells: Analytical model and numerical simulations. Sensors and Actuators B: Chemical, 211: p. 428-438, 2015.
    34. Olthuis, W., W. Streekstra, and P. Bergveld, Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sensors and Actuators B: Chemical, 24-25: p. 252-256, 1995.
    35. Sun, T., N.G. Green, S. Gawad, and H. Morgan, Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs. IET Nanobiotechnol, 1(5): p. 69-79, 2007.

    下載圖示 校內:2019-01-26公開
    校外:2019-01-26公開
    QR CODE