簡易檢索 / 詳目顯示

研究生: 鄭瑞文
Cheng, Jui-Wen
論文名稱: 應用GaN E-HEMT於錯相式返馳式轉換器之研製
Design and Implementation of Interleaved Flyback Converter with GaN E-HEMT
指導教授: 梁從主
Liang, Tsorng-Juu
共同指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 44
中文關鍵詞: 錯相式返馳式轉換器漏感能量回收寬能隙半導體元件氮化鎵高電子遷移率電晶體
外文關鍵詞: interleaved flyback converter, leakage energy recovery, wide bandgap semiconductor, GaN HEMT
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高效率、高功率密度和體積小是現今電源轉換器發展的趨勢。本論文利用GaN E- HEMT研製具有寬輸入電壓範圍之錯相式返馳式DC-DC轉換器,使轉換器工作於1 MHz以提高轉換器的功率密度,此錯相式返馳式轉換器具漏感能量回收功能,且降低輸出電流漣波,提升轉換器的效率。本論文首先介紹錯相式返馳式轉換器之動作原理,分析穩態的重要特性,並探討GaN的特性及驅動電路設計。最後,實作一系統規格為輸入電壓範圍72~240 V、輸出電壓為24 V、額定功率為144 W,切換頻率操作於1 MHz之錯相式返馳式轉換器,再使用同步整流以降低導通損失提高效率,以驗證理論分析之可行性。實驗結果顯示此轉換器在輸入電壓72 V的最高效率在50%負載時為84.1%。

    High efficiency, high power density, and small size has become the development trend of power converters. In this thesis, an interleaved flyback DC-DC converter with wide input voltage range with the GaN high electron mobility transistor (HEMT) is implemented for achieving high power density. The interleaved flyback converter inherent with leakage energy recycle function can reduce the output current ripple to improve efficiency which is suitable for 1 MHz operation. In this thesis, the operating principle and the steady-state characteristics of the interleaved flyback converter are analyzed. Also, the gate driver circuits design of GaN are discussed. Finally, an interleaved flyback converter with 1 MHz switching frequency laboratory prototype is implemented with input voltage range 72 V to 240 V, output voltage of 24 V, rated power of 144 W. In addition, the synchronous rectifiers are used at secondary side to reduce conduction loss for achieving higher efficiency to verify the theoretical analysis. The experimental results show that the highest efficiency is 84.1% at 50%load with the input voltage of 72 V.

    TABLE OF CONTENTS Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Organization 3 Chapter 2 Introduction of Flyback Converters and Wide Bandgap Devices 4 2.1 Review of the Flyback Converters 4 2.2 Introduction of Wide Bandgap Devices 9 2.3 Considerations of GaN Gate Driver Design 13 Chapter 3 Analysis of the Interleaved Flyback Converter 18 3.1 Operating Principles of Interleaved Flyback Converter 18 3.2 Steady-State Analysis of Interleaved Flyback Converter 29 Chapter 4 Hardware Implementation and Experimental Results 33 4.1 System Specifications and Key Parameters Design 33 4.2 Experimental Results and Discussions 36 Chapter 5 Conclusions and Future Works 40 5.1 Conclusions 40 5.2 Future Works 41 References 42

    [1] C. H. Wu, T. J. Liang, K. H. Chen, W. Y. Huang, P. Y. Lin, Y. J. Lu, and J. S. Li, “Design and implementation of a novel interleaved flyback converter with leakage energy recycled,” in Proc. IEEE ECCE Conf., pp. 5888-5895, 2015.
    [2] M. H. Cheng, T. J. Liang, W. Y. Huang, and W. C. Yang “Interleaved half-bridge flyback converter with zero-voltage switching,” in Proc. IEEE ECCE Conf., pp. 5967-5973, 2018.
    [3] S. Tan, P. Lin, C. Hu, L. Chen, and D. Xu, “Interleaved flyback micro-inverter with SiC MOSFET,” in Proc. IEEE PEAC Conf., pp. 285-290, 2014.
    [4] J. W. Kim, I. O. Lee, and G. W. Moon, “Series input parallel output interleaved flyback converter with regenerative leakage inductance energy,” in Proc. IEEE IPEMC Conf., pp. 1347-1352, 2012.
    [5] H. M. Wang, C. Y. Gong, H. X. Ma, and Y. G. Yan, “Research on a novel interleaved flyback DC/DC converter,” in Proc. IEEE ICIEA Conf., pp. 1-5, 2006.
    [6] Q. Mo, M. Chen, Z. Zhang, Y. Zhang, and Z. M. Qian, “Digitally controlled active clamp interleaved flyback converters for improving efficiency in photovoltaic grid-connected micro-inverter,” in Proc. IEEE APEC Conf., pp. 555-562, 2012.
    [7] L. Garcia-Rodriguez, E. Williams, J. C. Balda, J. Gonzalez-Llorente, E. Lindstrom, and A. Oliva, “Dual-stage microinverter design with a GaN-based interleaved flyback converter stage,” in Proc. IEEE ECCE Conf., pp. 4496-4502, 2013.
    [8] R. W. Erickson and D. Maksimovic, “Fundamentals of Power Electronics,” Kluwer Academic Publishers, 2000.
    [9] Marian. K. Kazimier, “Pulse-Width Modulated DC-DC Power Converters,” John Wiley & Sons, 2008.
    [10] R. Ridley, “Flyback Converter Snubber Design,” Switching Power Magazine, 2005.
    [11] G. B. Koo, “AN-4147 design guidelines for RCD snubber of flyback converters,” Fairchild Semiconductor, 2006.
    [12] A. Alganidi, “A comparison between different snubbers for flyback converters,” Master Dissertation, Western Ontario, Jan. 2018.
    [13] A. Alganidi, A. Abosnina, and Gerry Moschopoulos, “A comparative study of DC-DC flyback converters for telecom applications,” in Proc. IEEE INTELEC Conf., pp. 425-431, 2017.
    [14] Nurhakimah Mohd Mukhtar and Dylan Dah-Chuan Lu, “A bidirectional two-switch flyback converter with cross-coupled LCD snubbers for minimizing circulating current,” IEEE Trans. on Industrial Applications, vol. 66, no. 8, pp. 5948-5957, Aug. 2019.
    [15] M. G. Kim and Y. S. Jung, “A novel soft-switching two-switch flyback converter with a wide operating range and regenerative clamping,” Journal of Power Electronics, vol. 9, no. 5, pp.772-780, Sep. 2009.
    [16] Y. Konishi, C.Y. Inaba, and M. Nakaoka, “Two-switch flyback transformer soft switching PWM DC-DC converter with passively energy regeneration lossless snubbers,” in Proc. IEEE INTELEC Conf., pp. 699-704, 2003.
    [17] M. R. Yazdani and S. Rahmani, “A new zero-current-transition two-switch flyback converter,” in Proc. IEEE PEDSTC Conf., pp. 390-395, 2014.
    [18] Allan A. Saliva, “DN 2013-01 design guide for QR flyback converter,” Infineon Technologies North America (IFNA) Corp, Jan. 2013.
    [19] G. C. Huang, T. J. Liang, and K. H. Chen, “Losses analysis and low standby losses quasi-resonant flyback converter design,” in Proc. IEEE ISCAS Conf., pp. 217-220, 2012.
    [20] Z. S. Ling, T. J. Liang, L. S. Yang, and T. H. Li, “Design and implementation of interleaved quasi-resonant DC-DC flyback converter,” in Proc. IEEE PEDS Conf., pp. 429-433, 2009.
    [21] C. Wang, S. Xu, W. D. Shen, S. L. Lu, and W. F. Sun, “A single-switched high-switching-frequency quasi-resonant flyback converter,” IEEE Trans. on Power Electronics, Vol. 34, No. 9, pp. 8775-8786, Sep. 2019.
    [22] P. H. Liu, “Design consideration of active clamp flyback converter with highly nonlinear junction capacitance,” in Proc. IEEE APEC Conf., pp. 783-790, 2018.
    [23] Y. C. Liu, B. S. Huang, C. H. Lin, Katherine A. Kim, and H. J. Chiu, “Design and implementation of a high power density active-clamped flyback converter,” in Proc. IEEE IPEC-ECCE Asia Conf., pp. 2092-2096, 2018.
    [24] B. R. Lin, H. K. Chiang, K. C. Chen, and D. Wang, “Analysis, design and implementation of an active clamp flyback converter,” in Proc. IEEE PEDS Conf., pp. 424-429, 2005.
    [25] A. Lidow, J. Strydom, M. Rooij, and D. Reusch, “GaN Transistors for Efficient Power Conversion,” Second Edition, John Wiley & Sons, Inc.
    [26] M. Matteo, M. Gaudenzio, and Z. Enrico, “Power GaN Devices,” Springer International Publishing.
    [27] N. Kaminski, “State of the art and the future of wide band-gap devices,” in Proc. IEEE ECCE European Conf., pp. 1-9, 2009.
    [28] J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices, “ IEEE Trans. on Power Electronics, Vol. 18, No. 3, pp. 907-914, May. 2003.
    [29] A. Jones, F. F. Wang, and D. Costinett, “Review of commercial GaN power devices and GaN-based converter design challenges, “IEEE Trans. on Power Electronics, Vol. 4, No. 3, pp. 707-719, 2016.
    [30] G. Amarnath, G. Srinivas, and T. R. Lenka, “Electrical characteristics and 2DEG properties of passivated InAlN/AlN/GaN HEMT,” in Proc. IEEE ICCCI Conf., pp. 1-4, 2015.
    [31] L. Yuan, H. W. Chen, Q. Zhou, C. H. Zhou, and K. J. Chen, “Gate-induced schottky barrier lowering effect in AlGaN/GaN metal-2DEG tunnel junction field effect transistor,” IEEE Trans. on Electronics Device Letters, vol. 32, no. 9, pp.1221-1223, Jul. 2011.
    [32] Z. Liu, F. C. Lee, Q. Li, and R. Burgos, “Characterization and failure mode analysis of cascode GaN HEMT,” Master Dissertation, Virginia Tech, May. 2014.
    [33] GaN Systems Inc, “GN001 application guide design with GaN enhancement mode HEMT,” Preliminary Datasheet, Feb. 2018.
    [34] GaN Systems Inc, “GN001 application brief how to drive GaN enhancement mode HEMT,” Preliminary Datasheet, Apr. 2016.
    [35] Transphorm Inc, “650V GaN FET in TO-247 (source tab) TP65H050WS,” Datasheet, 2017.
    [36] GaN Systems Inc, “Bottom-side cooled 650 V e-mode GaN transistor GS66508B,” Preliminary Datasheet, 2018.
    [37] Z. Y. Zhang, F. Wang, L. M. Tolbert, and B. J. Blalock, “Active gate driver for crosstalk suppression of SiC devices in a phase-leg configuration,” IEEE Trans. on Power Electronics, Vol. 29, No. 4, pp. 1986-1997, Apr. 2014.
    [38] E. Aeloiza, A. Kadavelugu, and R. Rodrigues, “Novel bipolar active miller clamp for parallel SiC MOSFET power modules,” in Proc. IEEE ECCE Conf., pp. 401-407, 2018.
    [39] Y. Zushi, S. Sato, K. Matsui, Y. Murakami, and S. Tanimoto, “A novel gate assist circuit for quick and stable driving of SiC-JFETs in a 3-phase inverter,” in Proc. IEEE APEC Conf., pp. 1734-1739, 2012.
    [40] J. Strydom, D. Reusch, S. Colino, and A. Nakata, “AN-003 using enhancement mode GaN-on-silicon power FETs,” Efficient Power Conversion Corporation, 2017.
    [41] A. Lidow and J. Strydom, “WP-008 eGaN FET drivers and layout considerations,” Efficient power conversion corporation, 2016.
    [42] Y. K. Lo and J. Y. Lin, “Active-clamping ZVS flyback converter employing two transformers,” IEEE Trans. on Power Electronics, vol. 22, pp. 2416-2423, Nov. 2007.
    [43] H. L. Cheng, Y. N. Chang, H. C. Yen, C. C. Hua, and P. Y. Su, “A novel interleaved flyback-typed converter with ZVS operation,” in Proc. IEEE SPEC Conf., pp. 1-6, 2016.

    無法下載圖示 校內:2024-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE