簡易檢索 / 詳目顯示

研究生: 張君豪
Chang, Chun-Hao
論文名稱: 具步階位移背景誤差校正之8位元2GS/s快閃類比數位轉換器
An 8-bit 2GS/s Flash ADC with Step-Shifted Background Offset Calibration
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 90
中文關鍵詞: 比較器偏移誤差校正背景式偏移誤差校正快閃式類比數位轉換器
外文關鍵詞: Comparator, offset calibration, background calibration, flash analog-to-digital converter (ADC)
相關次數: 點閱:128下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個數位背景式偏移誤差校正技術,用以消除快閃式類比數位轉換器中比較器之偏移誤差。所提出的具步階位移背景式偏移誤差校正技術可以不中斷原本類比數位轉換器的操作並校正偏移誤差。本技術利用開關使得比較器的參考電壓產生一個最小值位元的步階位移。輸入訊號因為偏移誤差在不同步階位移下產生相同的溫度計編碼之機率不同,根據不同步階位移狀況輸出的溫度計編碼可以偵測比較器偏移誤差的極性,進而校正比較器之偏移誤差。此外本論文分析了對於數位偏移誤差矯正技術產的雜訊。
    本論文實現一具步階位移背景式偏移誤差校正技術之八位元每秒二十億次取樣快閃式類比數位轉換器,此實現是採用TSMC 90奈米,1P9M互補型金氧半導體製程。量測結果顯示,在2GHz的取樣速率以及5MHz的輸入頻率下,尚未開啟偏移誤差校正前SNDR為19.0dB,經過偏移誤差矯正後有32.4dB之SNDR動態表現。在1V電壓下,整個晶片不包含輸出緩衝器共消耗104mW之功率,FOM於輸入低頻時達到1.29pJ/conversion-step。

    A digital background offset calibration technique is proposed in this thesis. The proposed scheme, named step-shifted background calibration (SSBC), was developed for trimming the input-referred offset voltage of the comparators in a flash ADC without interrupting the ADC’s normal operation. By using reference voltage switches, the comparator reference voltage is step-shifted by one VLSB. For an input signal, the probability of the same thermometer code output would not be the same for different step-shifts; nevertheless, the polarity of the comparator offset voltage can be detected from the thermometer code output after different step-shifts. Noise analyses of digital calibration techniques are also presented in this thesis.
    An 8-bit 2GS/s flash ADC with step-shifted background calibration is implemented by TSMC 90nm 1P9M CMOS process. Before calibration, the measurement results show that the SNDR is 19.0dB with 5MHz input frequency at a 2GHz sampling rate. After calibration, measured SNDR is 32.4dB. The power consumption is 104mW from a 1 V supply for which output buffers are not included. The FOM of this ADC is 1.29pJ/conversion-step at low frequency input.

    Chapter1 Introduction 1 1.1 Motivation 1 1.2 Organization 3 Chapter2 Error Analyses of Flash ADC 5 2.1 Quantization error 5 2.2 Noise 6 2.3 Offset Mismatch 10 2.3.1 Reference offset 11 2.3.2 Comparator offset 14 2.4 Clock Jitter 17 2.5 Signal Dependent Delay Error 18 2.6 Metastability 22 Chapter3 Proposed Offset Calibration Technique 25 3.1 Algorithm of SSBC 25 3.2 Comparator-Shifted Background Calibration 29 3.3 Reference-Ladder and Comparator Shifted Background Calibration 33 3.4 Cascade Step-Shifted Background Calibration 35 Chapter4 ADC Digital Calibration Noise Analyses 42 4.1 Trimming Resolution Noise 43 4.2 Balancing Bouncing Noise 45 4.3 Statistical Error Noise 47 4.4 Noise Analyses of SSBC 51 4.4.1 DNL analysis of SSBC 52 4.4.2 INL analysis of SSBC 53 Chapter5 Circuit Design of Flash ADC 57 5.1 The Architecture of Proposed ADC 57 5.2 Reference Ladder Consideration 59 5.2.1 Mismatch of Resistor Ladder 59 5.2.2 Input Feed-Through of Resistor Ladder 60 5.3 Track and Hold Circuit 61 5.4 Comparator Circuit Design 62 5.4.1 Circuit Topology and Consideration 63 5.4.2 Preamplifier Circuit 64 5.4.3 Latch Comparator Circuit 64 5.5 Digital Calibration Circuit 65 5.5.1 SSBC Parameter Design 65 5.5.2 Phase Generator 66 5.5.3 Additional Offset-Adjusting Circuit 68 5.5.4 Offset calibration DAC 69 5.6 Digital Encoder 71 5.7 Timing Generator Circuit 71 Chapter6 Layout and Measurement Results 73 6.1 Floor Plan and Layout 73 6.2 Simulation result 75 6.3 Measurement Setup 77 6.4 PCB Design Consideration 78 6.4.1 Transmission line effect 78 6.4.2 Parasitics 78 6.4.3 PCB fabrication 80 6.5 Measurement result 82 Chapter7 Conclusion and Future Work 87 Reference 88

    [1] Robert C. Taft, Pier Andrea Francese, Maria Rosaria Tursi, Ols Hidri, Alan MacKenzie, Tobias Höhn, Philipp Schmitz, Heinz Werker and Andrew Glenny, "A 1.8 V 1.0 GS/s 10b Self-Calibrating Unified-Folding-Interpolating ADC With 9.1 ENOB at Nyquist Frequency," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3294-3304, Dec. 2009.
    [2] Hegong Wei, Peng Zhang, Bibhu Datta Sahoo and Behzad Razavi, "An 8-Bit 4-GS/s 120-mW CMOS ADC," in 2013 IEEE Custom Integrated Circuits Conf. (CICC), 2013.
    [3] Nicolas Le Dortz, Jean-Pierre Blanc, Thierry Simon, Sarah Verhaeren, Emmanuel Rouat, Pascal Urard, Stéphane Le Tual, Dimitri Goguet, Caroline Lelandais-Perrault and Philippe Benabes, "A 1.62GS/s Time-Interleaved SAR ADC with Digital Background Mismatch Calibration Achieving Interleaving Spurs Below 70dBFS," in 2014 IEEE Int. Solid-State Circuits Conf. Dig. of Tech. Papers (ISSCC), 2014.
    [4] Behzad Razavi and Bruce A. Wooley, "Design Techniques for High-Speed, High-Resolution Comparators," IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1916-1926, Dec. 1992.
    [5] Kattmann, K. and Barrow, J., "A Technique For Reducing Differential Non-linearity Errors In Flash A/D Converters," in 1991 IEEE Int. Solid-State Circuits Conf. Dig. of Tech. Papers (ISSCC), 1991.
    [6] Peter C. S. Scholtens and Maarten Vertregt, "A 6-b 1.6-Gsample/s Flash ADC in 0.18-um CMOS Using Averaging Termination," IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1599-1609, Dec. 2002.
    [7] Chi-Hang Chan, Yan Zhu, Sai-Weng Sin, Seng-Pan U, Rui Paulo Martins and Franco Maloberti, "A 5-Bit 1.25-GS/s 4x-Capacitive-Folding Flash ADC in 65-nm CMOS," IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2154-2169, Sep. 2013.
    [8] Yuji Nakajima, Akemi Sakaguchi, Toshio Ohkido, Norihito Kato, Tetsuya Matsumoto and Michio Yotsuyanagi, "A Background Self-Calibrated 6b 2.7 GS/s ADC With Cascade-Calibrated Folding-Interpolating Architecture," IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 707-718, Apr. 2010.
    [9] Masashi Kijima, Kenji Ito, Kuniyoshi Kamei and Sanroku Tsukamoto, "A 6b 3GS/s Flash ADC with Background Calibration," in 2009. CICC '09. IEEE Custom Integrated Circuits Conf., 2009.
    [10] Chun-Cheng Huang and Jieh-Tsorng Wu, "A Background Comparator Calibration Technique for Flash Analog-to-Digital Converters," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 9, pp. 1732-1740, Sep. 2005.
    [11] Chun-Cheng Huang, Chung-Yi Wang and Jieh-Tsorng Wu, "A CMOS 6-Bit 16-GS/s Time-Interleaved ADC Using Digital Background Calibration Techniques," IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 848-858, Apr. 2011.
    [12] Renuka P. Jindal, "Compact Noise Models for MOSFETs," IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2051-2061, Sep. 2006.
    [13] Shigeo Kuboki, Kazuo Kato, Nobuaki Miyakawa and Kiyoshi Matsubara, "Nonlinearity Analysis of Resistor String A/D Converters," IEEE Trans. Circuits Syst., vol. 29, no. 6, pp. 383-390, June 1982.
    [14] R. Jacob Baker, CMOS Circuit Design, Layout, and Simulation, 3 ed., Wiley-IEEE Press, 2010, pp. 966-971.
    [15] Marcel J. M. Pelgrom, C. J. Duinmaijer and Anton P. G. Welbers, "Matching Properties of MOS Transistors," IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1440, Oct. 1989.
    [16] Patrick G. Drennan and Colin C. McAndrew, "Understanding MOSFET Mismatch for Analog Design," IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 450-456, Mar. 2003.
    [17] Koen Uyttenhove, Jan Vandenbussche, Erik Lauwers, Georges G. E. Gielen and Michiel S. J. Steyaert, "Design Techniques and Implementation of an 8-bit 200-MS/s Interpolating/Averaging CMOS A/D Converter," IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 483-494, Mar. 2003.
    [18] Bernhard Wicht, Thomas Nirschl and Doris Schmitt-Landsiedel, "Yield and Speed Optimization of a Latch-Type Voltage Sense Amplifier," IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, July 2004.
    [19] Dimitrios Kagaris and Spyros Tragoudas, "Cost-Effective LFSR Synthesis for Optimal Pseudoexhaustive BIST Test Sets," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 1, no. 4, pp. 526-536, Dec. 1993.
    [20] Lawrence R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition," in Proc. of the IEEE, 1989.
    [21] Ardie G. W. Venes and Rudy J. van de Plassche, "An 80-MHz, 80-mW, 8-b CMOS Folding A/D Converter with Distributed Track-and-Hold Preprocessing," IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1846-1853, Dec. 1996.
    [22] Lukas Kull, Thomas Toifl, Martin Schmatz, Pier Andrea Francese, Christian Menolfi, Matthias Braendli, Marcel Kossel, Thomas Morf, Toke Meyer Andersen and Yusuf Leblebici, "A 90GS/s 8b 667mW 64× Interleaved SAR ADC in 32nm Digital SOI CMOS," in 2014 IEEE Int. Solid-State Circuits Conf. Dig. of Tech. Papers (ISSCC), 2014.
    [23] Lukas Kull, Thomas Toifl, Martin Schmatz, Pier Andrea Francese and ChristianMenolfi, "A 35mW 8b 8.8 GS/s SAR ADC with Low-Power Capacitive Reference Buffers in 32nm Digital SOI CMOS," in 2013 Symp. on VLSI Circuits (VLSIC), 2013.
    [24] Timmy Sundström, Christer Svensson and Atila Alvandpour, "A 2.4 GS/s, Single-Channel, 31.3 dB SNDR at Nyquist, Pipeline ADC in 65 nm CMOS," IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1575-1584, July 2011.
    [25] Jonathan Proesel, Gokce Keskin, Jean-Olivier Plouchart and Lawrence Pileggi, "An 8-bit 1.5GS/s Flash ADC Using Post-Manufacturing Statistical Selection," in 2010 IEEE Custom Integrated Circuits Conf. (CICC), 2010.
    [26] R. C. Taft, Chris A. Menkus, Maria Rosaria Tursi, Ols Hidri and Valerie Pons, "A 1.8-V 1.6-GSample/s 8-b Self-Calibrating Folding ADC With 7.26 ENOB at Nyquist Frequency," IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2107-2115, Dec. 2004.
    [27] Mark I. Montrose, Emc & the Printed Circuit Board: Design, Theory, & Layout Made Simple, 1 ed., Wiley-IEEE Press, 1998.

    下載圖示 校內:2022-06-12公開
    校外:2022-06-12公開
    QR CODE