簡易檢索 / 詳目顯示

研究生: 陳宏明
Chen, Hung-Ming
論文名稱: 運動控制中位置與速度估測之研究
A Study on Position and Velocity Estimation of Motion Control
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 54
中文關鍵詞: 速度估測
外文關鍵詞: velocity estimation
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在運動控制系統中為了改善定位效果,常採用位置與速度雙重回授的方式。光學增量型編碼器常被用來量測位置,並利用位置量測量估算出速度,以達到運動控制目的。但由於編碼器輸出訊號的物理誤差、量化誤差及非同步量測等因素影響,會惡化速度估測之精度,進而影響定位效果。因此本論文針對位置與速度估測進行探討,並提出一種結合多項式近似的速度估測法則,以期獲得更精準的速度估測。本論文使用SOPC嵌入式模組來實現運動控制器,將編碼器回授電路、位置估測、速度估測、位置控制等軟硬體功能整合在一個SOPC系統上實現。最後透過模擬與實驗驗證所提出的方法,並說明此方法的優點。

    In order to improve the tracking performance, many motion control system have utilized the measurements of position and speed for feedback control. Optical incremental encoders are popular for position measurement, and velocity can be estimated from the position measurement for motion control. However, the encoder position measurements suffer from encoder imperfections, quantization errors and measurement uncertainties, leading to inaccurate velocity estimate and tracking error. The paper analyzes the position and velocity estimation problem. A method which is based on polynomial fit, is proposed to obtain more accurate velocity estimate. In this thesis, motion controller is realized by using SOPC embedded system in which functions such as decoder, position estimation, velocity estimation, and position control are implemented in one embedded platform. Finally, the proposed method are examined through simulation and experiment, and the advantage of the proposed method are illustrated.

    摘要……………………………………………………………I ABSTRACT………………………………………………………II 誌謝……………………………………………………………III 目錄……………………………………………………………IV 表目錄…………………………………………………………VI 圖目錄…………………………………………………………VII 第一章 緒論…………………………………………………1 1.1 研究背景與動機……………………………………1 1.2 文獻回顧……………………………………………1 1.3 論文架構……………………………………………3 第二章 位置估測與速度估測………………………………4 2.1 位置量測誤差………………………………………4 2.1.1 編碼器的物理誤差…………………………4 2.1.2 非同步量測與量化誤差……………………7 2.2 位置估測……………………………………………8 2.2.1 最小平方多項式近似法……………………8 2.2.2 平行量測概念………………………………11 2.3 速度估測法則………………………………………12 2.3.1 多項式近似固定時間距離量測法…………12 2.3.2 平行量測之後項差分展開法………………15 2.3.3 固定距離時間量測法………………………17 第三章 模擬結果……………………………………………18 3.1 SOPC系統介紹………………………………………18 3.1.1 NiosII發展套件簡介………………………18 3.1.2 SOPC系統模擬架構…………………………20 3.2 速度估測模擬結果…………………………………21 3.2.1 多項式近似固定時間距離量測法分析……21 3.2.2 各種法則分析與比較………………………25 第四章 實驗結果………………………………………………32 4.1 滾珠螺桿運動機械平台……………………………32 4.1.1 精密滾珠螺桿………………………………32 4.1.2 交流伺服馬達驅動器………………………33 4.1.3 機械平台保護電路…………………………34 4.1.4 光學尺………………………………………36 4.2 系統鑑別……………………………………………37 4.3 控制器設計…………………………………………40 4.4 實驗結果與分析……………………………………43 4.4.1 轉速實驗……………………………………44 4.4.2 閉迴路實驗…………………………………48 第五章 結論…………………………………………………50 參考文獻………………………………………………………51

    [1] 黃百毅, 智慧型精密定位控制系統設計, 台灣大學電機學院研究所博士論文, 2000.
    [2] 許景育, XY軸機械平台之位置定位控制設計, 成功大學電機系研究所碩士論文, 2004.
    [3] 陳新淵, SOPC嵌入式系統於高精密運動控制器之應用, 成功大學電機系研究所碩士論文, 2006.
    [4] R. Bonert, “Design of a High Performance Digital Tachometer with a Microcontroller," IEEE Transactions on Instrumentation and Measurement, Vol. 38, No. 6, pp. 1104-1108, 1989.
    [5] C. G. Baril and P. O. Gutman, “Performance Enhancing Adaptive Friction Compensation for Uncertain Systems,” IEEE Transactions on Control Systems Technology, Vol. 5, No. 5, pp. 466 - 479, 1997.
    [6] P. Bhatti and B. Hannaford, “Single-Chip Velocity Measurement System for Incremental Optical Encoders," IEEE Transactions on Control Systems Technology, Vol. 5, No. 6, pp. 654-661, 1997.
    [7] R. H. Brown, S. C. Schneider and M. G. Mulligan, “Analysis of Algorithms for Velocity Estimation from Discrete Position Versus Time Data," IEEE Transactions on Industrial Electronics, Vol. 39, No. 1, 1992.
    [8] P. S. Carpenter, R. H. Brown, J. A. Heinen, and S. C. Schneider, “On Algorithms for Velocity Estimation Using Discrete Position Encoders,” in Proc. IEEE IECON'95, pp. 844-849, 1995.
    [9] J. S. Chen and J. C. Juang, “A Robust Adaptive Friction Control Scheme of Robot Manipulators,” ICGST International Journal on Automation Robotics and Autonomous Systems, Vol. 5, Issue I, pp. 11-19, 2006.
    [10] M. K. Ciliz and M. Tomizuka, “Modeling and Compensation of Frictional Uncertainties in Motion Control: a Neural Network Based Approach,” Proceedings of the American Control Conference, Vol. 5, pp. 3269-3273, 1995.
    [11] M. Gopi and S. Manohar, “A Unified Architecture for the Computation of B-spline Curves and Surfaces,” Parallel and Distributed Systems, Vol. 8, No. 12, pp. 1275 - 1287, 1997.
    [12] S. S. Ge, T. H. Lee, and S. X. Ren, “Adaptive Friction Compensation of Servo Mechanisms,” International Journal of Systems Science, Vol. 32, No. 4, pp. 523-532, 2001.
    [13] E. Galvan and A. Torralba, “Asic Implementation of a Digital Tachometer with High Precision in a Wide Speed Range," IEEE Transactions on Industrial Electronics, Vol. 43, No. 6, 1996.
    [14] B. Hebert, M. Brule and L. A. Dessaint, “A High Efficiency Interface for a Biphase Incremental Encoder with Error Detection," IEEE Transactions on Industrial Electronics, Vol. 40, No. 1, 1993.
    [15] K. I. Hwu and Y. T. Yau, “Applying a Counter-based PWM Control Scheme to an FPGA-based SR Forward Converter,” Applied Power Electronics Conference and Exposition, pp. 5-10, 2006.
    [16] R. C. Kavanagh, “Improved digital tachometer with reduced sensitivity to sensor nonideality,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 4, pp. 890-897, 2000.
    [17] R. C. Kavanagh, “Performance Analysis and Compensation of M/T-Type Digital Tachometer,” IEEE Transactions on Instrumentation and Measurement, Vol. 50, No. 4, pp. 890-897, 2001.

    [18] Y. S. Kung, C. S. Chen, K. I. Wong, and M. H. Tsai, “Development of a FPGA-based Control IC for PMSM Drive with Adaptive Fuzzy Control,” Industrial Electronics Society, pp. 6-10, 2005.
    [19] R. Kelly, J. Llamas, and R. Campa, “A Measurement Procedure for Viscous and Coulomb Friction,” IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 4, pp. 857-861, 2000.
    [20] Y. S. Kung and G. S. Shu, “Design and Implementation of a Control IC for Vertical Articulated Robot Arm Using SOPC Technology,” Mechatronics, pp. 532-536, 2005.
    [21] J. N. Lygouras, K. A. Lalakos and P. G. Tsalides, “High-Performance Position
    Detection and Velocity Adaptive Measurement for Closed-Loop Position Control," IEEE Transactions on Industrial Electronics, Vol. 47, No. 4, 1998.
    [22] H. S. Lee and M. Tomizuka, “Robust Motion Controller Design for High-accuracy Positioning Systems,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 1, pp. 48 - 55, 1996.
    [23] S. H. Lee, T. A. Lasky and S. A. Velinsky, "Improved Velocity Estimation for Low-Speed and Transient Regimes Using Low-Resolution Encoders," IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 3, 2004.
    [24] R. D. Lorenz, K. W. Van Patten, “High-Resolution Velocity Estimation for All-Digital, ac Servo Drives," IEEE Transactions on Industry Applications, Vol. 27, No. 4, pp. 701-705, 1991.
    [25] R. Merry, R. van de Molengraft and M. Steinbuch, “Error modeling and improved position estimation for optical incremental encoders by means of time stamping," Proceedings of the 2007 American Control Conference, pp. 3570 – 3575, 2007.

    [26] L. Piegl and W. Tiller, “Curve and Surface Constructions Using Rational B-splines,” Computer-Aided Design, Vol. 19, No. 9, pp. 485 - 498, 1987.
    [27] Y. S. Rung, P. G. Huang, and C. W. Chen, “Development of a SOPC for PMSM Drives,” Circuits and Systems, pp. II-329-332, 2004.
    [28] Y. X. Su, C. H. Zheng, Dong Sun, B. Y. Duan, “A Simple Nonlinear Velocity Estimator for High-Performance Motion Control," IEEE Transactions on Industrial Electronics, Vol. 52, No. 4, pp. 1161-1169, 2005.
    [29] T. Umeno and Y. Hori, “Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-freedom Controller Design,” IEEE Transactions on Industrial Electronics, Vol. 38, No. 5, pp. 363 – 368, 1991.
    [30] P. Vedagarbha, D. M. Dawson, and M. Feemster, “Tracking Control of Mechanical Systems in the Presence of Nonlinear Dynamic Friction Effects,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 4, pp. 446-456, 1999.
    [31] S. M. Yang and S. J. Ke, “Performance Evaluation of a Velocity Observer for Accurate Velocity Estimation of Servo Motor Drives,” IEEE Transactions on Industrial Electronics, Vol. 36, No. 1, 2000.
    [32] Y. Zhang, G. Liu, and A. A. Goldenberg, “Friction Compensation with Estimated Velocity,” Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Vol. 3, pp. 2650-2655, 2002.

    無法下載圖示 校內:2010-07-30公開
    校外:2038-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE