簡易檢索 / 詳目顯示

研究生: 簡志璁
Chien, Chih-Tsung
論文名稱: 再生瀝青混凝土添加焚化爐底碴之工程性質
Engineering Properties of Asphalt Concrete Mixed with Municipal Bottom Ash and Reclaimed Asphalt Pavements
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 160
中文關鍵詞: 耐久性工程性質微觀結構再生瀝青混凝土底碴
外文關鍵詞: bottom ash (BA), engineering properties, micro structure, durability, reclaimed asphalt pavements (RAP)
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣近年來由於環保意識抬頭與新鮮料源短缺,對於焚化爐底碴(BA)與再生瀝青混凝土(RAP)再利用的研究已行之多年,本研究將在不同的添加含量下對再生瀝青混凝土添加焚化爐底碴進行工程性質與耐久性分析。
    第一階段以再生瀝青混凝土添加規範內為基準,添加不同含量的焚化爐底碴,進行工程性質及耐久性試驗,比較再生瀝青混凝土添加焚化爐底碴的可行性研究;第二階段利用掃描式電子顯微鏡(SEM)分析不同添加含量下再生瀝青混凝土添加焚化爐底碴試體的瀝青膠漿與瀝青薄膜的包裹程度,比較其微觀結構上之差異。
    結果顯示,在工程性質上,再生瀝青混凝土的老化瀝青有助於提升焚化爐底碴黏結效果較弱的部份,在耐久性實驗中,焚化爐底碴當中所含的鈣離子讓瀝青膠漿能更緊密的吸附於一般粒料的表面上,提升抗水侵害的能力,降低試體剝脫的可能性。綜合試驗結果,取代量在20%焚化爐底碴與20%再生瀝青混凝土下,依然有良好的工程性質與耐久性;在微觀結構上,發現瀝青膠漿厚度會因為細料的影響有著很大的改變,並且無法在試樣中均勻觀察到理論瀝青薄膜厚度,觀測到的瀝青薄膜厚度會較理論值為低。

    Because attention to the environment in recent years and the source shortage of fresh material in Taiwan, bottom ash (BA) and reclaim asphalt pavements’ (RAP) reuse research have been done for many years. This research regards RAP mixed with BA as the substituting material. Carry on engineering properties and durability analysis in marry content of asphalt concrete mixed with RAP and BA.
    The first stage is in the adding norm as RAP adds different content’s BA, and mixed with AC-20 asphalt, relatively the feasibility research which BA adds RAP by carrying on engineering properties and durability test; The second stage compare the difference on its micro structure by analyzing the asphalt colloid and asphalt thin film coating aggregates’ degree in marry content of asphalt concrete mixed with RAP and BA using the scanning electron microscope( SEM).
    The results show, it contributes to improving the part of BA cohering effect with weaker result to retrieve the aging asphalt of the RAP, in engineering properties. In the durability experiment, the calcium ion included in the BA let asphalt colloid can absorbing on the surface of material more closely to improve the ability of water resistance and reduce the possibility of scaling. Comprehensive result of the experiment, the BA and RAP replacing amount are both under 20% still have well engineering properties and durability; on the micro structure, funded asphalt colloid thickness have heavy change because of the fine material influence, and unable to observe the thickness of theory asphalt thin film in the sample. The thickness of asphalt thin film will be lower than theory value.

    目 錄 摘要 I 目錄 VII 表目錄 XII 圖目錄 XIV 第一章 緒論 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-3 1.4 研究範圍 1-4 第二章 文獻回顧 2.1焚化爐底碴介紹 2-1 2.1.1焚化爐底碴來源及處理流程 2-2 2.1.2 焚化爐底碴之物理特性與化學特性 2-4 2.1.2.1 焚化爐底碴之物理特性 2-5 2.1.2.2 焚化爐底碴之化學特性 2-6 2.1.3添加焚化爐底碴最佳瀝青含量之判定 2-8 2.1.4 國外焚化爐底碴使用情形 2-9 2.1.5 國內焚化爐底碴使用的情形 2-17 2.2 再生瀝青混凝土(reclaimed asphalt pavement, RAP) 2-20 2.2.1 瀝青混凝土再生的方法和介紹 2-21 2.2.2 再生瀝青混凝土添加比例 2-22 2.2.3 再生瀝青混凝土的工程性質 2-23 2.2.3.1 回彈模數(resilient modulus, Mr) 2-23 2.2.3.2 間接張力強度 2-24 2.2.3.3 浸水剝脫試驗 2-25 2.2.4再生瀝青混凝土的黑石頭行為 2-27 2.2.5 再生瀝青混凝土的變異性 2-28 2.2.6 國外再生瀝青混凝土使用的情形 2-29 2.3 瀝青黏結料薄膜厚度 2-30 第三章 研究計畫 3.1 試驗架構與流程 3-1 3.2 試驗材料與規範 3-3 3.3 瀝青物性試驗 3-4 3.4 粒料物性試驗 3-4 3.5 毒性特性溶出試驗(TCLP) 3-5 3.6 回收瀝青淬取試驗 3-6 3.7 馬歇爾配合設計試驗 3-7 3.8 再生瀝青混凝土添加焚化爐底碴的基本力學試驗 3-8 3.8.1 間接張力試驗 3-8 3.8.2 回彈模數試驗 3-10 3.8.3 肯特堡(Cantabro)磨耗試驗 3-11 3.8.4 瀝青薄膜厚度之計算方法 3-12 3.8.5 穩定值、流度值試驗 3-15 3.9 殘餘強度試驗 3-16 3.9.1 浸水剝脫試驗 3-16 3.9.2 吸收能(Absorbed Energy) 3-17 3.9.3 能量損失(Energy Loss) 3-18 3.10 掃描式電子顯微鏡(Scanning Electron Microscope) 3-18 3.10.1 二次電子(Secondary Electrons) 3-20 3.10.2背向散射電子(Backscattered Electrons) 3-20 3.11 掃描式電子顯微鏡的成像比較 3-21 3.12 Image j 科學影像處理軟體 3-23 3.13 符號說明 3-26 第四章 試驗結果分析與討論 4.1 基本物性試驗 4-1 4.1.1 瀝青黏結料基本特性 4-1 4.1.2 粒料基本特性 4-2 4.1.3 底碴的基本特性 4-3 4.1.3.1 篩分析試驗 4-3 4.1.3.2 毒性特性溶出試驗 4-4 4.1.4再生瀝青混凝土的基本特性 4-5 4.1.5再生瀝青混凝土配合設計 4-7 4.2 工程性質試驗 4-9 4.2.1 間接張力試驗 4-9 4.2.2 Cantabro磨耗試驗 4-11 4.2.3 穩定值、流度值試驗 4-16 4.2.4 回彈模數試驗分析 4-18 4.2.5 不同填充料取代對工程性質的影響 4-21 4.3 耐久性試驗 4-23 4.3.1 殘餘強度試驗(TSR) 4-23 4.3.2 吸收能與能量損失 4-26 4.4 微觀結構試驗 4-30 4.4.1 粒料的微觀結構 4-32 4.4.2 瀝青混凝土試體的微觀結構 4-33 4.4.3 Image j 影像分析 4-35 4.4.4 影像分析瀝青膠漿厚度 4-37 4.4.5 利用線段色差影像分析薄膜厚度 4-42 4.4.6 利用區塊色差影像分析薄膜厚度 4-50 第五章 結論與建議 5.1結論 5-1 5.2 建議 5-3 參考文獻 參-1 附錄 附-1 表 目 錄 表2.1 焚化爐底碴典型化學組成部分 2-2 表2.2 底碴夯實試驗得到的含水量與密度 2-6 表2.3 不同種類的底碴滲濾液(底碴顆粒小於50mm)含量的變化 2-7 表2.4 馬歇爾配合設計結果 2-8 表2.5 美國毒性特性溶出法定限值 2-10 表2.6 德國焚化掩埋標準 2-12 表2.7 丹麥環境部對焚化底碴再利用化學分析的規範 2-15 表2.8 一般廢棄物品質分類標準 2-18 表2.9 各種溫度下回彈模數試驗結果 2-24 表2.10 各種溫度下間接張力試驗結果 2-25 表2.11 間接張力強度試驗值 2-26 表2.12 國際經濟合作組織之再生瀝青混凝土使用狀況 2-29 表3.1 國內公路工程常用密級配瀝青混凝土規範 3-3 表3.2 表面積因子 3-13 表3.3 編號與含量關係表 3-26 表4.1 AC-20基本物性試驗 4-1 表4.2 粒料基本物性試驗 4-2 表4.3 焚化爐底碴細料TCLP試驗結果 4-4 表4.4 再生瀝青混凝土基本物性試驗 4-5 表4.5 再生瀝青混凝土配合設計之瀝青含量表 4-7 表4.6 各級配修正後之最佳含油量列表 4-8 表4.7 不同填充料取代之工程性質結果 4-21 附表1.1 細粒料比重及吸水率 附-1 附表1.2 再生瀝青混凝土使用比例公式表 附-2 附表1.3 再生瀝青混凝土試體高度及重量表 附-3 附表1.4 再生瀝青混凝土添加焚化爐底碴之分餾黏滯度 附-6 附表1.5 分餾試驗瀝青黏滯度ANOVA分析結果 附-6 圖 目 錄 圖2.1 資源回收廠處理流程圖 2-3 圖2.2 焚化爐底碴再利用前的處理流程圖 2-4 圖2.3 焚化爐底碴與沙和礫石的分佈曲線圖 2-5 圖2.4 焚化爐底碴添加比例與最佳含油量之關係圖 2-9 圖2.5 國內目前引進之熱拌再生流程圖 2-22 圖3.1 研究流程圖 3-2 圖3.2 SEM內部載台構造 3-19 圖3.3 掃描式電子顯微鏡試驗準備流程 3-22 圖3.4 掃描式電子顯微鏡成像問題,放大倍率10000倍 3-22 圖4.1 焚化爐底碴級配曲線圖 4-3 圖4.2 再生瀝青混凝土級配曲線 4-6 圖4.3 固定再生瀝青混凝土含量下,不同焚化爐底碴添加量之間接張力值 4-10 圖4.4 固定焚化爐底碴含量下,不同再生瀝青混凝土添加量之間接張力值 4-11 圖4.5 固定再生瀝青混凝土含量下不同焚化爐底碴添加量之Cantabro磨耗率 4-12 圖4.6 固定再生瀝青混凝土含量下不同焚化爐底碴添加量之薄膜厚度 4-13 圖4.7 固定焚化爐底碴含量下不同再生瀝青混凝土添加量之Cantabro磨耗率 4-14 圖4.8 固定焚化爐底碴含量下不同再生瀝青混凝土添加量之薄膜厚度 4-15 圖4.9 固定再生瀝青混凝土含量下,不同焚化爐底碴添加量之穩定值 4-16 圖4.10 固定焚化爐底碴含量下,不同再生瀝青混凝土添加量之穩定值 4-17 圖4.11 固定再生瀝青混凝土含量下,不同焚化爐底碴添加量之回彈模數 4-19 圖4.12 固定焚化爐底碴含量下,不同再生瀝青混凝土添加量之回彈模數 4-20 圖4.13 各取代料瀝青膠漿黏滯度 4-22 圖4.14 固定再生瀝青混凝土含量下,不同焚化爐底碴添加量之殘餘強度值 4-24 圖4.15 固定焚化爐底碴含量下,不同再生瀝青混凝土添加量之殘餘強度值 4-25 圖4.16 固定再生瀝青混凝土含量下,不同焚化爐底碴添加量之吸收能 4-26 圖4.17 固定焚化爐底碴含量下,不同再生瀝青混凝土添加量之吸收能 4-27 圖4.18 固定再生瀝青混凝土含量下,不同焚化爐底碴添加量之能量損失率 4-28 圖4.19 固定焚化爐底碴含量下,不同再生瀝青混凝土添加量之能量損失率 4-29 圖4.20 試體切割後橫斷面結構 4-31 圖4.21 添加料微觀結構比較 4-33 圖4.22 瀝青混凝土試體的掃描式電子顯微鏡成像 4-34 圖4.23 Image j 影像分析成果 4-36 圖4.24 影像分析瀝青膠漿厚度 4-40 圖4.25 膠漿厚度頻率分佈 4-41 圖4.26 Fresh影像分析薄膜厚度 4-44 圖4.27 Fresh薄膜厚度頻率分佈 4-45 圖4.28 0R2B影像分析薄膜厚度 4-46 圖4.29 0R2B薄膜厚度頻率分佈 4-47 圖4.30 2R0B影像分析薄膜厚度 4-48 圖4.31 2R0B薄膜厚度頻率分佈 4-48 圖4.32 各組薄膜厚度頻率分佈 4-49 圖4.33 區塊色差影像分析薄膜厚度 4-51 附圖1.1 AC-20 工作扮合黏度試驗曲線 附-2 附圖1.2 孔隙率-含油量試驗圖 附-4 附圖1.3 單位重-含油量試驗圖 附-4 附圖1.4 穩定值-含油量試驗圖 附-5 附圖1.5 流度值-含油量試驗圖 附-5 附圖2.1 2R2B放大倍率100倍二次電子掃描成像 附-7 附圖2.2 2R2B放大倍率500倍二次電子掃描成像 附-7 附圖2.3 2R2B放大倍率1000倍二次電子掃描成像 附-8 附圖2.4 2R2B放大倍率5000倍二次電子掃描成像 附-8 附圖2.5 2R2B放大倍率10000倍二次電子掃描成像 附-9 附圖2.6 2R1B放大倍率100倍二次電子掃描成像 附-9 附圖2.7 2R1B放大倍率500倍二次電子掃描成像 附-10 附圖2.8 2R1B放大倍率1000倍二次電子掃描成像 附-10 附圖2.9 2R1B放大倍率5000倍二次電子掃描成像 附-11 附圖2.10 2R1B放大倍率10000倍二次電子掃描成像 附-11 附圖2.11 1R2B放大倍率100倍二次電子掃描成像 附-12 附圖2.12 1R2B放大倍率500倍二次電子掃描成像 附-12 附圖2.13 1R2B放大倍率1000倍二次電子掃描成像 附-13 附圖2.14 1R2B放大倍率5000倍二次電子掃描成像 附-13 附圖2.15 1R2B放大倍率10000倍二次電子掃描成像 附-14 附圖2.16 1R1B放大倍率100倍二次電子掃描成像 附-14 附圖2.17 1R1B放大倍率500倍二次電子掃描成像 附-15 附圖2.18 1R1B放大倍率1000倍二次電子掃描成像 附-15 附圖2.19 1R1B放大倍率5000倍二次電子掃描成像 附-16 附圖2.20 1R1B放大倍率10000倍二次電子掃描成像 附-16 附圖2.21 0R2B放大倍率100倍二次電子掃描成像 附-17 附圖2.22 0R2B放大倍率500倍二次電子掃描成像 附-17 附圖2.23 0R2B放大倍率1000倍二次電子掃描成像 附-18 附圖2.24 0R2B放大倍率5000倍二次電子掃描成像 附-18 附圖2.25 0R2B放大倍率10000倍二次電子掃描成像 附-19 附圖2.26 0R1B放大倍率100倍二次電子掃描成像 附-19 附圖2.27 0R1B放大倍率500倍二次電子掃描成像 附-20 附圖2.28 0R1B放大倍率1000倍二次電子掃描成像 附-20 附圖2.29 0R1B放大倍率5000倍二次電子掃描成像 附-21 附圖2.30 0R1B放大倍率10000倍二次電子掃描成像 附-21

    中華民國行政院環境保護署 (2007),http://www.epa.gov.tw/main/index.asp,2007年7月7日瀏覽。

    中華民國行政院環境保護署(2007). 「一般廢棄物-垃圾焚化廠焚化底碴再利用管理方式」,2008年8月9日瀏覽。

    中華鋪面工程學會(2004). 「近代新瀝青混凝土路面材料及產製鋪設技術」。

    林志棟、廖溪坤、林秉祁和王睿懋 (2000). 「台灣地區再生瀝青混凝土成效規範初步擬定之研究」,土木水利,第二十七卷,第三期。

    林晉哲 (2004) 添加不同再生料含量對瀝青混凝土之影響,國立成功大學土木工程研究所碩士論文,台南。

    侯清元 (2007) 評估熟化對於焚化爐底碴做為瀝青混凝土添加料之影響,國立成功大學土木工程研究所碩士論文,台南。

    張蕙蘭 (2003). 「國外焚化底碴再利用介紹」,http://portal.nccp.org.tw/monthlymgz/ens/ens12/doc/5-2.pdf,工業技術研究院環境與衛生發展中心,2007年7月9日瀏覽。

    廖宗盛,邱垂德(1998). 「國內熱拌再生廠之設廠概況與研擬中的管理措施」,第三屆鋪面材料再生學術研討會論文集,台中,第498-511頁。

    科學影像處理軟體Image j 網站(2008),
    http://rsb.info.nih.gov/ij/index.html,2008年5月21日瀏覽。

    Anderson, D.A., Bahia, H.U., and Dongre, R., (1992). “Rheological Properties of Mineral Filler-Asphalt Mastics and Its Importance to Pavement Performance,” Effects of Aggregates and Mineral Fillers on Asphalt Mixture Performance, ASTM STP 1147.

    Buttlar, W. G. and Dave, E. V., (2005). “A Micromechanics-Based Approach for Determining Presence and Amount of Recycled Asphalt Pavement Material in Asphalt Concrete,” Journal of Asphalt Association of Paving Technologists, Vol.74, pp.829-884.

    Chen, J. S., Chu P. Y., Chang, J. E., Lu, H. C., Wu, Z. H., and Lin, K. Y., (2008). “Engineering and Environmental Characterization of Municipal Solid Waste Bottom Ash as an Aggregate Substitute Utilized for Asphalt Concrete,” Journal of Materials in Civil Engineering, Vol.20, pp.432-439.

    Elseifi, M.A., Al-Qadi, I.L., Yang, S.H., and Carpenter, S. (2008), “Validity of Asphalt Binder Film Thicken Concept in Hot-Mix Asphalt,” 87th Transportation Research Board Annual Meeting, Washington, D.C. (CD-ROM).

    Forteza, R., Far, M., Seguı, and C., Cerda, V., (2004). “Characterization of Bottom Ash in Municipal Solid Waste Incinerators for Its Use in Road Base,” Waste Management, Vol.24, pp.899-909.

    Hadipour, K., and Anderson, K. O., (1998). “An Evaluation of Permanent Deformation and Low Temperature Characteristics of Some Recycled Asphalt Concrete Mixture,” Journal of the Association of Asphalt Paving Technologists, Vol.57, pp.615-645.

    Hassan, H. F., (2005). “Recycling of Municipal Solid Waste Incinerator Ash in Hot-Mix Asphalt Concrete,” Construction and Building Materials, Vol.19, pp.91-98.

    Huang, B., Li, G., Vukosavljevic, D., Shu, X. and Egan, B.K., (2005). “Laboratory Investigation of Mixing HMA with RAP,” Transportation Research Board 83rd Annual Meeting, Washington, D. C. (on CD-ROM).

    Huang, C. M., Chiu, C.T., Li, K. C., and Yang, W. F., (2006). ”Physical and Environmental Properties of Asphalt Mixtures Containing Incinerator Bottom Ash,” Journal of Hazardous Materials, No. 707 Sec. 2, pp.1-8.

    Johannessen, K. M., (1996). “Regulation of municipal waste incineration ash: a legal review and update,” Journal of Hazardous Materials, Vol. 47, pp.383-393.

    Karlsson, R. and Isacsson, U., (2006). “Material-Related Aspects of Asphalt Recycling—State-of-the-Art,” Journal of Materials in Civil Engineering, Vol.18, pp.81-92.

    Kose, S., Guler, M., Bahia, H.U., and Masad, E., (2000). “Distribution of Strains within Asphalt Binders in HMA Using Imaging and Finite Element Techniques,” Transportation Research Record, No. 1728, Washington, D.C., pp.21-27.

    Kosson, D.S., van der Sloot, H.A., Eighmy, T.T., (1996). “Approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues,” Journal of Hazardous Materials, Vol. 47, pp.43-75.

    Kandhal, P. S., Foo, K. Y., and Mallick, R. B., (1998). “Critical Review of Voids in Mineral Aggregate Requirements in Superpave,” Transportation Research Record 1609, pp.21–27.

    National Cooperative Highway Research Program (NCHRP), (2001). ”Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method: Guidelines,” Research Results Digest¬¬ – Number 253.

    Ohio Department of Transportation,(2002)”Supplemental Specification 874 Ultrathin Bonded Asphalt Concrete,” Ohio.

    Roberts, F. L., Kandhal, P. S., Ray Brown, E., Dah-Yinn, Lee., Kennedy, T. W., (1996) Hot Mix Asphalt Materials,Mixture Design,and Construction.

    Soleymani, H.R., Anderson, M., McDaniel, R., and Abdelrahman, M., (2000). “Investigation of The Black Rock Issue for Recycled Asphalt Mixtures,” Journal of Association of Asphalt Paving Technologists, Vol.69, pp.366-390.

    Sondag, M. S., Chadbourn, B. A. and Drescher, A., (2002). Investigation of Recycled Asphalt Pavement (RAP) Mixtures Final Report, Minnesota Department of Transportation, Virginia.

    Wiles, C. C. (1996). “Municipal solid waste combustion ash: state-of-the-knowledge,” Journal of Hazardous Materials, Vol.47, pp.325-344.

    下載圖示 校內:2011-08-25公開
    校外:2011-08-25公開
    QR CODE