| 研究生: |
白祐瑋 Bai, You-Wei |
|---|---|
| 論文名稱: |
無人機窄波段多光譜影像於地物分類之研究 THE CLASSIFICATION OF LANDCOVER BY NARROW-BAND MULTI-SPECTRAL UAV IMAGES |
| 指導教授: |
饒見有
Rau, Jiann-Yeou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | MiniMCA 、地物分類 、物件導向影像分析 、多光譜影像 |
| 外文關鍵詞: | MiniMCA, Landcover classification, OBIA, Multi-spectral image |
| 相關次數: | 點閱:130 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無人飛行載具(Unmanned Aerial Vehicle, UAV)具有高機動性且低成本的特性,若搭載多光譜感測器,能獲取比傳統航照或遙測衛星更高空間、時間及波譜解析度之高解析度多光譜影像。微型化多光譜相機陣列(Miniature Multiple Camera Array, MiniMCA)是一台具有12個鏡頭之窄波段多光譜相機,其可記錄之波譜範圍從藍光到近紅外光(450-950 nm),其中包含三個紅色邊緣(Red-edge)波段,波長分別為700 nm、720 nm及750 nm,能推導出更多的植生指標以利植生健康指數的判讀。與寬波段之多光譜衛星影像相比,MiniMCA波段寬度僅10 nm,更能準確的推導各式植生指標,因此MiniMCA所拍攝的多波譜資訊,更適合應用於精準農業、植生監測、地物分類和植物逆境偵測等遙測應用。為了與一般寬波段之可見光相機在影像分類上的能力比較,本研究利用定翼型UAV同時搭載MiniMCA與Canon 5D II DSLR數位相機,於同一測區進行影像資料的收集並進行物件導向式(Object-Based Image Analysis, OBIA)的影像分類與分類精度比較。其中因MiniMCA的不同波段間存在影像錯位問題,因成像距離而造成漸暈現象,以及未經改正的波譜反射值,故須進行波段套合、漸暈改正與輻射改正等影像前處理。最後透過空三平差、密集影像匹配及正射鑲嵌程序,利用高解析度之DSLR影像產製1公尺網格的DSM與10公分解析度之RGB三波段彩色正射影像,並透過相同之DSM產製40公分解析度之MiniMCA十二波段之反射率正射影像如此便能利用正射影像的波譜資訊推導各式植生指標,及整合物高模型(Object Height Model, OHM),並採用物件導向的物件幾何資訊開發階層式分類法則進行地物分類。經由地物分類大致可以分出以下七大類,樹木、草地、水體、建物、裸露地、道路和其它,其中樹木和草地部分可以再細分為茂密和稀疏植被。本研究針對MiniMCA中的十二波段(MiniMCA-12)、四波段(MiniMCA-4)和三波段(MiniMCA-3)進行分類測試,並比較Canon 5D II可見光三波段(Canon-3)以及Canon-3加入MiniMCA 750 nm波長之紅外光波段組成之四波段(Canon-4)在地物分類上之精度差異。Canon-3和MiniMCA-3的分類kappa指標分別為0.66與0.60,加入紅外光資訊的Canon-4和MiniMCA-4的分類kappa指標分別為0.73與0.72,而使用所有波段的MiniMCA-12分類成果為0.78。成果顯示Canon-4和MiniMCA-4的分類成果相當,與Canon-3和MiniMCA-3比較時可發現加入紅外光可提升整體分類成果,同時說明使用更多的波段數能獲得最好的結果,表示波段數量對於地物分類有顯著之影響。
Comparing with satellite and airplane, Unmanned Aerial Vehicle (UAV) is a portable, high mobility, and low cost platform for obtaining higher spatial, spectral, and temporal resolution images. Miniature Multiple Camera Array (MiniMCA) is a light weight and narrow-band multispectral camera. It is composed by 12 different lenses which can acquire spectral information ranging from 450 nm (blue) to 950 nm (near infrared). These 12 narrow bands include three rededge bands which wavelengths are 700 nm, 720 nm, and 750 nm that can derive more vegetation indices for healthy vegetation identification. The bandwidth of MiniMCA is only 10 nm that can derive more vegetation indices than broad band satellite images for water stress detection, vegetation monitoring, and precision agriculture. In this study, MiniMCA and Canon 5D II DSLR camera are mounted together on a fixed-wing UAV to acquire both high spatial resolution multispectral images and visible light images. Besides, the vegetation classification and the comparison of classification accuracy are performed through Object-Based Image Analysis (OBIA). Since the different bands of MiniMCA have band misregistration effect, vigenetting effect and the digital value need to transfer to reflectance value for precise vegetation indices calculation, it needs to do data preprocessing, including band to band registration, vigenetting effect correction and radiometric correction. In the end, performing through aerial triangulation, dense matching and ortho-mosaic to generate 1 m grid DSM, 10 cm RGB visible light ortho-image and 40 cm MiniMCA multi-spectral ortho-image. By OBIA and combine several vegetation indices and Object Height Model (OHM) to evaluate land cover classification results. The study area can be classified into seven classes which include tree, grass, water body, building, bare land, road, and others. In which, the tree and the grass can be classified as dense vegetation and sparse vegetation. In this study, we use twelve bands of MiniMCA (MiniMCA-12), four bands (MiniMCA-4), and three bands (MiniMCA-3) to classify images and compare the difference of the accuracy of Canon 5D II RGB visible light (Canon-3) and Canon-3 which adds 750 nm of MiniMCA (Canon-4). The kappa index of Canon-3 and MiniMCA-3 is 0.66 and 0.60, respectively. The kappa index of Canon-4 and MiniMCA-4 which add infrared light information is 0.73 and 0.72, respectively. The kappa index of MiniMCA-12 which use all bands is 0.78.The results of classification show that Canon-4 and MiniMCA-4 are comparable. Comparing with Canon-3, we can find when adding infrared light can improve the overall classification results, while using more bands to get the best results. It shows that the number of bands has a significant impact on the classification.
李庭誼, 2011. 結合光譜與空間特徵之高光譜影像物件分類. 臺灣大學土木工程學研究所學位論文, 1-106.
周明中, 2005. 紋理輔助高解析度衛星影像分析應用於偵測入侵性植物分布之研究. 國立中央大學圖書館.
邵泰璋, 史天元, 2000. 類神經網路於多光譜影像分類之應用. 航測及遙測學刊 5, 1-15.
章國威, 王淑姿, 申雍, 羅正宗, 黃鼎名, 蔡和霖, 2006. 應用抽穗期多光譜航照影像預估水稻產量之研究. 航測及遙測學刊 11, 27-38.
陳益凰, 曾義星, 1999. 應用多時段衛星影像辨識水稻田之研究. 航測及遙測學刊 4, 1-15.
黃韋凱, 林銘郎, 陳良健, 林彥享, 蕭震洋, 2010. 物件導向分析方法應用於遙測影像之分區及崩塌地與人工設施分類. Journal of Photogrammetry and Remote Sensing 15, 29-49.
黃麗娟, 2007. 植生指標應用於土地利用分類判釋之研究. 中興大學水土保持學系所學位論文, 1-68.
楊敏生, 1994. 模糊理論簡介. 數學傳播中央研究院數學研究所發行, 台北.
詹鈞評, 2012. 使用多尺度多階段物件導向影像分析技術進行崩塌地判釋.
詹鈞評, 饒見有, 黃倬英, 劉暹, 李文慶, 2016. 應用透視投影轉換進行微型化多相機陣列之波段套合. Journal of Photogrammetry and Remote Sensing 21, 183-197.
鄭雅文, 史天元, 蕭國鑫, 2008. 物件導向分類於高解析度影像自動判釋. Journal of Photogrammetry and Remote Sensing 13, 273-284.
簫國鑫, 劉治中, 徐偉城, 2004. 不同影像分類方法應用於水稻辨識之探討. 航測及遙測學刊 9, 13-26.
Agapiou, A., Hadjimitsis, D.G., Alexakis, D.D., 2012. Evaluation of broadband and narrowband vegetation indices for the identification of archaeological crop marks. Remote sensing 4, 3892-3919.
Baluja, J., Diago, M.P., Balda, P., Zorer, R., Meggio, F., Morales, F., Tardaguila, J., 2012. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation Science 30, 511-522.
Berni, J.A., Zarco-Tejada, P.J., Suárez, L., Fereres, E., 2009. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing 47, 722-738.
Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing 65, 2-16.
Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and psychological measurement 20, 37-46.
Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment 37, 35-46.
Gruber, M., Ladstädter, R., 2011. Results from ultracam monolithic stitching, Proc. ASPRS Annu. Conf., pp. 1-6.
Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote sensing of environment 90, 337-352.
Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L., 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote sensing of environment 81, 416-426.
Kelcey, J., Lucieer, A., 2012. Sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing. Remote Sensing 4, 1462-1493.
Ladstädter, R., Gruber, M., Wiechert, A., 2010. Monolithic Stitching: One sensor geometry for multiple sensor camera, ASPRS 2010 Annual Conference.
Laliberte, A.S., Goforth, M.A., Steele, C.M., Rango, A., 2011. Multispectral remote sensing from unmanned aircraft: Image processing workflows and applications for rangeland environments. Remote Sensing 3, 2529-2551.
Lillesand, T., Kiefer, R.W., Chipman, J., 2014. Remote sensing and image interpretation. John Wiley & Sons.
Oruc, M., Marangoz, A., Buyuksalih, G., 2004. Comparison of pixel-based and object-oriented classification approaches using Landsat-7 ETM spectral bands, Proceedings of XX ISPRS Congress, p. 5.
Peña, J.M., Torres-Sánchez, J., de Castro, A.I., Kelly, M., López-Granados, F., 2013. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS One 8, e77151.
Sankaran, S., Maja, J.M., Buchanon, S., Ehsani, R., 2013. Huanglongbing (citrus greening) detection using visible, near infrared and thermal imaging techniques. Sensors 13, 2117-2130.
Stagakis, S., González-Dugo, V., Cid, P., Guillén-Climent, M.L., Zarco-Tejada, P.J., 2012. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS Journal of Photogrammetry and Remote Sensing 71, 47-61.
Turner, D., Lucieer, A., Malenovský, Z., King, D.H., Robinson, S.A., 2014. Spatial co-registration of ultra-high resolution visible, multispectral and thermal images acquired with a micro-UAV over Antarctic moss beds. Remote Sensing 6, 4003-4024.
Whiteside, T., Ahmad, W., 2005. A comparison of object-oriented and pixel-based classification methods for mapping land cover in northern Australia, Proceedings of SSC2005 Spatial intelligence, innovation and praxis: The national biennial Conference of the Spatial Sciences Institute, pp. 1225-1231.
Zadeh, L.A., 1965. Fuzzy sets. Information and control 8, 338-353.
Zeitler, W., Doerstel, C., Jacobsen, K., 2002. Geometric calibration of the DMC: Method and Results. INTERNATIONAL ARCHIVES OF PHOTOGRAMMETRY REMOTE SENSING AND SPATIAL INFORMATION SCIENCES 34, 324-332.