簡易檢索 / 詳目顯示

研究生: 林育全
Lin, Yu-Chuan
論文名稱: 半穿透半反射式TFT-LCD畫素電路設計
Pixel Circuit Design of Transflective TFT-LCD
指導教授: 林志隆
Lin, Chih-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 55
中文關鍵詞: 單一液晶間隙開口率畫素電路半穿透半反射式液晶顯示器
外文關鍵詞: pixel circuit, transflective LCD, single cell gap, aperture ratio
相關次數: 點閱:107下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在利用S-PVA電路設計的概念,提出三個採用單一液晶間隙架構之半穿透半反射式液晶顯示器新式畫素電路,在簡單的製程下,利用電路的方式來達到穿透與反射兩區液晶操作電壓的匹配,使得面板具有廣視角功能且有較高的顯示品質。
    本論文所提出的第一個電路架構僅由兩顆TFT所組成,畫素電路元件數最精簡且提高了畫素的開口率。電路所模擬之曲線在低灰階時誤差約29灰階內、中灰階誤差則約25灰階內。第二個電路架構則由三顆TFT組成並多利用了兩顆電容來改善前一個電路中低灰階時的曲線誤差,模擬時曲線在低灰階誤差可縮小到23灰階內、中灰階誤差則約24灰階內,高灰階時誤差雖然較大,但其實面板顯示在高灰階時亮度會較亮,因此以人眼來講會比較判斷不出來。第三個電路架構亦是由三顆TFT所組成,架構上採用了特殊波形驅動方式來控制穿透與反射區液晶操作電壓的比例,將能使曲線在模擬時誤差極小且非常匹配原始特性曲線。本論文所提出的三個電路,均能提升面板的顯示品質,除了提高畫素開口率以增進發光效率外,對於面板在廣視角的應用上也相當有助益,因此非常具有其應用價值。

    This work presents three pixel circuits of transflective TFT-LCD. The concept of super patterned vertical alignment (S-PVA) and the structure of single cell gap are adopted in circuit design. With simple fabrication processes, the principle of pixel circuits is to match the operating voltages of liquid crystal in transmissive(T) and reflective(R) regions, respectively. Three proposed pixel circuits in this work can provide wide viewing angle and high image quality for panel.
    The first pixel circuit, composed of two TFTs, simplifies circuit elements and increases aperture ratio of pixel. The simulation result of this circuit has an error of 29 gray levels in the low gray level and an error of 25 gray levels in the middle gray level. The second pixel circuit, composed of three TFTs and additional two capacitors is used to improve the first pixel circuit. The simulation result has an error of 23 gray levels in the low gray level and an error of 24 gray levels in the middle gray level. Despite the error is large in the high gray level, the pixel in the high gray level is brighter, so human eyes can not identify the difference. The third pixel circuit has three TFTs, special wave driving method is used to control the voltage ratio between T and R regions, the simulation result is well matched to the characteristic curve, which means the error is minimized. The proposed circuits improve image quality and enhance luminating efficiency. These circuits will contribute to wide viewing angle applications in the future.

    摘 要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 第 一 章 緒論 1.1 研究背景 1 1.2 研究動機 4 1.3 論文架構介紹 8 第 二 章 TFT LCD之電路架構及顯示原理介紹 2.1 TFT LCD之基本構造與發光方式 9 2.2影響半穿透半反射式面板顯示品質下降的因素 13 2.3半穿透半反射式LCD畫素電路介紹與討論 15 第 三 章 2-TFT架構之新式畫素電路設計 3.1 電路架構與操作 22 3.2 電路模擬 25 3.3 電路之優缺點 29 第 四 章 3-TFT架構之新式畫素電路設計 4.1 電路架構與操作 31 4.2 電路模擬 34 4.3 電路之優缺點 38 第 五 章 3-TFT架構採用特殊波形驅動之新式畫素電路設計 5.1 電路架構與操作 40 5.2 電路模擬 44 5.3 電路之優缺點 47 第 六 章 結論與未來展望 6.1 結論 49 6.2 未來展望 51 參考文獻 52

    [1]X. Zhu, Z. Ge, T. X. Wu, and S. T. Wu, “Transflective Liquid Crystal Displays,” Journal of Display Technology, vol. 1, pp. 15-29, Sep. 2005.
    [2]S. H. Lee, K. H. Park, J. S. Gwag, T. H. Yoon, and J. C. Kim, “A Multimode-Type Transflective Liquid Crystal Display Using the Hybrid Aligned Nematic and Parallel-Rubbed Vertically Aligned Modes,” Journal of Applied Physics Part 1, vol. 42, pp. 5127-5132, Aug. 2003.
    [3]C. J. Yu, D. W. Kim, and S. D. Lee, “Multimode Transflective Liquid Crystal Display with a Single Cell Gap Using a Self-Masking Process of Photoalignment,” Applied Physics Letters, vol. 85, pp. 5146-5148, Nov. 2004.
    [4]K. H. Liu, C. Y. Cheng, Y. R. Shen, C. M. Lai, C. R. Sheu, Y. Y. Fan C. C. Chen, and I. J. Lin, “A Novel Double Gamma Driving Transflective TFT LCD,” in Proceeding of International Display Manufacturing Conference, pp. 215-218, Feb. 2003.
    [5]K. J. Kim, J. S. Lim, T. Y. Jung, C. Nam, and B. C. Ahn, “A New Transflective TFT-LCD with Dual Color Filter,” in Proceeding of International Display Workshops, pp. 433-436, Dec. 2002.
    [6]K. Fujimori, Y. Narutaki, and N. Kimura, “High-Transmissive Advanced TFT LCD Technology,” Sharp Technology Journal, no. 4, pp. 1241-1246, Apr. 2003.
    [7]S. G. Kang, S. H. Kim, S. C. Song, W. S. Park, C. Yi, C. W. Kim, and K. H. Chung, “Development of a Novel Transflective Color LTPS-LCD with Cap-Divided VA-Mode,” in SID Technology Digest, pp. 31-33, 2004.
    [8]Y. C. Yang, J. Y. Choi, J. Kim, M. Han, J. Chang, J. Bae, D. J. Park, S. I. Kim, N. S. Roh, Y. J. Kim, M. Hong, and K. Chung, “Single Cell Gap Transflective Mode for Vertically Aligned Negative Nematic Liquid Crystals,” in SID Technology Digest, pp. 829-831, 2006.
    [9]Z. Ge, X. Zhu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Switchable Single-Cell-Gap Transflective LCD for Mobile Displays,” in SID Technology Digest, 2009.
    [10]R. Sander, “Transflective Liquid Crystal Display Device,” WIPO Patent, WO/03/048847 A1, 2003.
    [11]S. S. Kim, “The World’s Largest (82-in.) TFT-LCD,” in SID Technology Digest, pp. 1842-1847, 2005.
    [12]S. B. Park, J. Lyu, Y. Um, H. Do, S. Ahn, K. Choi, K. H. Kim, and S. S. Kim, “A Novel Charge-Shared S-PVA Technology,” in SID Technology Digest, pp. 1252-1254, 2007.
    [13]Y. P. Huang, W. K. Huang, C. H. Tsao, J. J. Su, H. L. Hou, L. Liao, C. Y. Lee, T. R. Chang, Y. C. Lin, and P. L. Chen, “Additional Refresh Technology (ART) of Advanced-MVA(AMVA) Mode for High Quality LCDs,” in SID Technology Digest, pp. 1010-1013, 2007.
    [14]X. Zhu, Z. Ge, and S. T. Wu, “A Single-Cell-Gap Transflective Liquid Crystal Display with Complementary Common Electrodes and Reflectors,” Journal of Display Technology, vol. 3, no. 3, pp. 247-249, Sep. 2007.
    [15]X. Zhu, Z. Ge, T. X. Wu, and S. T. Wu, “Transflective Liquid Crystal Displays,” Journal of Display Technology, vol. 1, no. 1, pp. 15-29, Sep. 2005.
    [16]R. Lu, Z. Ge, Q. Hong, and S. T. Wu, “Transflective In-Plane Switching Liquid Crystal Display,” Journal of Display Technology, vol. 3, no. 1 , pp. 15-21, Mar. 2007.
    [17]Z. Ge, M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Wide-View and Broadband Circular Polarizers for Transflective Liquid Crystal Displays,” Journal of Display Technology, vol. 4, no. 2, pp. 129-138, Jun. 2008.
    [18]C. R. Sheu, K. H. Liu, L. P. Hsin, Y. Y. Fan, I. J. Lin, C. C. Chen, B. C. Chang, C. Y. Chen, Y. R. Shen, “A Novel LTPS Transflective TFT LCD Driving by Double Gamma Method,” in SID Technology Digest, pp. 653-655, 2003.
    [19]J. H. Lee, X. Zhu, and S. T. Wu, “Novel Color-Sequential Transflective Liquid Crystal Displays,” Journal of Display Technology, vol. 3,no. 1, pp. 2-8, Mar. 2007.
    [20]M. G. Clark and I. A. Shanks, “A Field-Sequential Color CRT Using a Liquid Crystal Color Switch,” in SID Technology Digest, pp. 172-173, 1982.
    [21]R. Vatne, P. A. Johnson, and P. Bos, “A LC/CRT Field-Sequential Color Display,” in SID Technology Digest, pp. 28-29, 1983.
    [22]H. Hasebe and S. Kobayashi, “A Full-Color Field-Sequential LCD Using Modulated Backlight,” in SID Technology Digest, pp. 81-83, 1985.
    [23]P. S. Shih, J. S. Lin, H. L. Pan, P. Y. Chen, T. S. Liao, and K. H. Yang, “Development of Asymmetric-Gate-Coupled Eight-Domain (AGC-8D) HVA for TFT-LCD TVs,” in SID Technology Digest, pp. 208-211, 2008.
    [24]S. S. Kim, B. H. You, J. H. Cho, S. Jae, M. B. H. Berkeley, and N. D. Kim, “82" Ultra Definition LCD Using New Driving Scheme and Advanced Super PVA Technology,” in SID Technology Digest, pp. 196-199, 2008.
    [25]Y. S. Um, J. H. Son, D. H. Chung, J. W. Lee, Y. H. Shin, J. J. Lyu, H. S. Chang, H. W. Kim, and C. H. Lee, “Thin Film Transistor Array Panel and LCD Having Plural Red, Green and Blue Pixels in which Each Color Pixel Includes First and Second Subpixel Electrodes Having Different Voltage/Area Ratios with Respect to Each Other and for Each Color Pixel ,” U. S. Patent, No. 7,499,129 B2, 2009.

    下載圖示 校內:2011-06-24公開
    校外:2011-06-24公開
    QR CODE