簡易檢索 / 詳目顯示

研究生: 蘇芳瑩
Su, Fang-Ying
論文名稱: 室溫離子熔液中電沉積鈀合金
Electrodeposition of Palladium Alloys in the Room Temperature Ionic Liquid
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 128
中文關鍵詞: 室溫離子熔液電沉積鈀金鈀銀
外文關鍵詞: palladium-gold, palladium-silver, electrodeposition, ionic liquids
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討鈀合金在室溫離子熔液內的電化學行為與電沉積。而此室溫離子熔液系統是1-ethyl-3-methyl imidazolim tetrafluoroborate(EMI-BF4),此融鹽屬於空氣及水穩定性的室溫融鹽。因為氫氣的生成、吸附使得鈀合金的鍍層易有氫脆及剝落的現象,所以在融鹽系統中電沉積金屬或合金的優點是可避免氫氣及氧氣生成所造成的干擾。
    在鹼性EMI-BF4融鹽中分別利用循環伏安法(cyclic voltammetry)以及chronoamperometry探討鈀、金、銀離子在玻璃碳電極上的電化學行為。鈀離子在30度的玻璃碳電極上之成核機制為瞬時成核,但當溫度升到80度及120度時成核機制轉變為逐步成核。在銀離子的成核機制中,當溫度由30度到120度時皆屬於瞬時成核。另外於鹼性EMI-BF4融鹽中氯化金在玻璃碳電極有吸附現象。
    本論文中在鹼性EMI-BF4室溫離子熔液中電沉積鈀-金、鈀-銀合金。在含有鈀-金的融鹽系統中,以定電流的方式來電沉積,並探討氯化鈀及氯化金濃度、溫度、電流密度對鍍層成份及表面型態的影響。另外,在含有鈀-銀的融鹽系統中,以定電位的方式來電沉積,並探討氯化鈀及氯化銀的相對濃度或絕對濃度、溫度、沉積電位對鍍層成份及表面型態的影響。此薄膜的表面型態、鍍層成份及晶形結構是由掃描式電子顯微鏡(SEM)、能量光譜儀(EDS)及X光繞射分析儀(XRD)加以鑑定。

    In this study, the main content is the study of electrochemical behavious and electrodeposition of palladium alloys in an air- and water-stable 1-ethyl-3-methyl imidazolim tetrafluoroborate(EMI-BF4) room temperature ionic liquid. Due to hydrogen adsorptions, good Pd-alloys deposition are often difficult to obtain from aqueous dath. The advantage of doing electrodeposition of alloys in ionic liquids is that the interference of hydrogen can be avoided.
    The electrochemistry and electrodeposition of Pd (Ⅱ), Au(I), and Ag(I) have been studied with cyclic voltammetry and chronoamperometry at a polycrystalline glass carbon electrode. The nucleation-growth mechanism of Pd(Ⅱ) on the GC electrode is the instantaneous three-dimesional nucleation/growth at 300C, but when the temperature was raised up to 800C and 1200C, the nucleation mechanism changes to progressive three-dimesional nucleation growth. The nucleation growth mechanism of silver on the GC electrode is instantaneous three-dimesional nucleation growth at 300C、800C and 1200C. Cyclic voltammetry of gold(I) showed a remarkable hysteresis, which is attributed to the adsorption of AuCl on the GC electrode.
    In the study, the electrodeposition of Pd-Au and Pd-Ag alloys were investigated in the basic ionic liquid(EMI-BF4). In the Pd-Au system, the deposits were obtained from constant-current electrolysis. The effects of concentration of Pd(Ⅱ) and Au(I), temperature, and deposition current were discussed. In the Pd-Ag system, the deposits were obtained from constant-potential electrolysis. The effects of the relative and absolute concentrations of Pd(Ⅱ) and Ag(I), temperature, and deposition potential were discussed. Deposits were examined with a combination of methods, including scanning electromicreoscopy(SEM), energy dispersive X-ray spectroscopy(EDS), and X-ray diffraction(XRD) techniques.

    表目錄……………………………………………………………………………………..Ⅴ 圖目錄……………………………………………………………………………………..Ⅶ 符號說明……………………………………………………………………………….xviii 第一章 緒論:.......................................................................................................................1 1-1 融鹽的發展....................................................................................................................1 1-2 室溫離子熔液之性質及應用........................................................................................3 1-3 路易士酸鹼概念………………………………………………………………………5 1-4 鈀合金的文獻、性質、發展與研究動機…………………………………………….6 第二章. 實驗相關參考資料: 2-1 藥品.................................................................................................................................9 2-2 融鹽的製備...................................................................................................................11 2-3實驗裝置與儀器............................................................................................................12 第三章. 實驗方法及原理: 3-1 電化學原理與方法(cyclic voltammery)..................................................................14 3-2 循環伏安法...................................................................................................................15 3-3 電位階升法...................................................................................................................16 3-4 庫倫法………………………………………………………………………………...16 3-5 電化學成核理論……………………………………………………………………...17 3-5-1 成核動力學 ............................................................. ……………………………...18 3-5-2 三維空間的核成長...................................................................................................22 第四章.實驗結果與討論: 4-1 氯化鈀的電化學與電沉積:..........................................................................................29 4-1-1 氯化鈀的電化學行為……………………………………………………………...29 4-1-2 鈀電沉積過程中所發生的成核反應……………………………………………...30 4-1-3 鈀的電沉積………………………………………………………………………...34 4-1-4 氯化鈀在鹼性室溫融鹽中的擴散係數…………………………………………...35 4-2 氯化金的電化學與電沉積:.........................................................................................39 4-2-1 金的電化學行為…………………………………………………………………...39 4-2-2 金的電沉積………………………………………………………………………...41 4-2-3 氯化金在鹼性室溫融鹽中的擴散係數…………………………………………...46 4-3 氯化銀的電化學與電沉積:.........................................................................................47 4-3-1 氯化銀的電化學行為……………………………………………………………..47 4-3-2 電沉積銀過程中所發生的成核反應……………………………………………..48. 4-3-3 銀的電沉積……………………………………………………………………… ..49 4-3-4 氯化銀在鹼性室溫融鹽中的擴散係數…………………………………………...50 4-4 鈀-金合金的電化學與電沉積:....................................................................................56 4-4-1 鈀-金合金的電化學行為…………………………………………………………56 4-4-2 Pd-Au合金電沉積過程中所發生的成核反應…………………………………..58 4-4-3 鈀-金合金的電沉積………………………………………………………………58 4-5 鈀-銀合金的電化學與電沉積:....................................................................................76 4-5-1 鈀-銀合金的電化學行為…………………………………………………………76 4-5-2 鈀-銀合金的電沉積……………………………………………………………....81 第五章.結論:……………………………………………………………………………101 第六章.參考文獻:……………………………………………………………………….102 表一 離子熔液是由不同的有機鹽類及無機鹽類所結合…………………………….4 表二 代表不同成核模式的α及n值…………………………………………………21 表三 成核實驗中與電流-時間曲線之電流最大值(im)有關的瞬時與逐步成核各 參數表示………………………………………………………………………….28 表四 金電極氧化溶解反應的數據…………………………………………………….40 圖1使用GC電極於EMIC-BF4室溫離子熔液所得的電位窗。(a)中性EMI-BF4融鹽(b)EMIC過量的鹼性EMIC-BF4融鹽之循環伏安圖。電位掃引速率為50mV/s。…………………………………………………………………………….6 圖2循環伏安法電位掃描方式與循環伏安圖................................................................16 圖3電極表面上核形成以及核成長示意圖……………………………………………19 圖4電極表面,左:瞬時成核,右:逐步成核過程之示意圖………………………20 圖5 (a):核成長時擴散層重疊的示意圖。垂直虛線是代表完全獨立的兩個擴散層界限。(b):半球形核以散亂方式分佈於電極表面的平面示意圖。核周圍的圓圈代表擴散層………………………………………………………………………23 圖6三維空間核成長之電流-時間曲線與將其無因次化後合理論曲線的比較。圖中是逐步成核的情形……………………………………………………………………26 圖7在800C,含有24mM Pd(Ⅱ)的鹼性EMI-BF4融鹽(氯離子濃度495mM)中以玻璃碳電極掃引所得之循環伏安圖。電位掃引速率為50mV/s。…………………..29 圖8 800C,在含有不同濃度PdCl2的鹼性EMI-BF4融鹽中以玻璃碳電極掃引所得的循環伏安圖,電位掃引速率為50mV/s。(-)8.7mM(--)13.6mM (----)24mM(-・・-)55.3mM。………………………………………………………………………....31 圖9不同溫度下於含有24mM PdCl2的鹼性EMI-BF4融鹽中所掃引的循環伏安圖,電位掃引速率為50mV/s。(-)300C (- -)500C (----)800C (-・・-)1200C。…………...31 圖10含24mMPdCl2之鹼性EMI-BF4融鹽中在(A)300C(B)800C(C)1200C的玻璃碳電極上之chronoamperometry實驗所得到的電流-時間曲線。(A)沉積電位為-0.52V,-0.53V,-0.54V,-0.55V(B)-0.37V,-0.38V,-0.39V,-0.4V,-0.41V (C)-0.27V,-0.28V,-0.29V,-0.3V,-0.31V。……………………………………...32 圖11. 將圖10轉換成無因次之電流-時間曲線後與三維空間擴散控制核成長之理論曲線的比較圖。(A)300C(B)800C(C)1200C。………………………………….33 圖12. 24mM Pd(Ⅱ)在鹼性EMI-BF4融鹽中,(A)以電位階升法於玻璃碳電極上之電流(i)與時間(t)的曲線圖,階升電位為-0.55V (B) I 對 (t)-1/2 做圖。………….35 圖13. 鍍於Ni片上的鈀鍍層之SEM照片,電沉積量為150mC。(A)(B)(C)的溫度為300C;(a)(b)(c)的溫度為800C。……………………………………………….36 圖14鍍於Ni片上的鈀鍍層之SEM照片,電沉積量為150mC。(A)(B)(C)的溫度為1200C。……………………………………………………………………….......37 圖15. 1200C下以Ni片為基材在不同電流密度下所得到的鈀鍍層的X光繞射光譜。 (a) Ni片(b)j=0.16mA/cm2(c)j=0.2mA/cm2(d)j=0.28mA/cm2。……………........38 圖16. 於相同的電流密度(j= 0.2mA/cm2)下以Ni片為基材在不同溫度下所得到的鈀鍍層的X光繞射光譜。(a) Ni片(b)300C(c)800C(d)1200C。………….……….38 圖17. 300C下,於空白鹼性EMI-BF4的融鹽(氯離子濃度495mM)中以金片掃引所得到的循環伏安圖。電位掃引速率:50mV/s。………………………………..39 圖18. 300C,在含有6.5mM Au(I)的鹼性EMI-BF4融鹽中,以玻璃碳電極上的多重掃引之循環伏安圖。C1為第一圈、C2為第二圈。電位掃引速率:50mV/s。……………………………………………………………………...40 圖19. 300C,在含有6.5mM Au(I)的鹼性EMI-BF4融鹽中,以玻璃碳電極上的電流取樣伏安圖。(◆)300C(▓)500C(▲)800C(●)1200C。………………………….42 圖20. 鍍於Ni片上的金鍍層之SEM照片,電沉積量為150mC。(A)(B)(C)的溫度為300C;(a)(b)(c)的溫度為800C。…………………………………………….....43 圖21. 鍍於Ni片上的金鍍層之SEM照片,電沉積量為150mC。(A)(B)(C)的溫度為1200C。…………………………………………………………………………..44 圖22. 1200C下以Ni片為基材在不同電位下所得到的金鍍層的X光繞射光譜。(a) Ni片(b)-0.45V(c)-0.5V(d)-0.55V。………………………………………………...45 圖23 於相同的電位(E=-0.55V)下以Ni片為基材在不同溫度下所得到的金鍍層的X光繞射光譜。(a) Ni片(b)300C(c)1200C。…………………………………..….45 圖24 6.5mM Au(I)在鹼性EMI-BF4融鹽中,(A)以電位階升法於玻璃碳電極上之電流(i)與時間(t)的曲線圖,階升電位為-0.6V (B) I 對 (t)-1/2 做圖。………….46 圖25. 含有16mM Ag(Ⅱ)的鹼性EMI-BF4融鹽於800C下在玻璃碳電極上的循環伏安圖。電位掃引速率為50mV/s。………………………………………………….47 圖26. 不同溫度下於含有16mM AgCl的鹼性EMI-BF4融鹽中所掃引的循環伏安圖,電位掃引速率為50mV/s。(-)300C (- -)500C (----)800C (-・・-)1200C。…….…48 圖27 30mM Ag(I)在鹼性EMI-BF4融鹽中,(A)以電位階升法於玻璃碳電極上之電流(i)與時間(t)的曲線圖,階升電位為-0.61V (B) I 對 (t)-1/2 做圖。…………50 圖28 含30mMAgCl之鹼性EMI-BF4融鹽中在(A)300C(B)800C(C)1200C的玻璃碳 電極上之chronoamperometry實驗所得到的電流-時間曲線。(A)沉積電位-0.57V,-0.58V,-0.59V,-0.6V,-0.61V(B)-0.45V,-0.46V,-0.47V,-0.48V, -0.49V(C)-0.44V,-0.45V,-0.47V,-0.48V,-0.49V。………..……………………….51 圖29. 將圖25轉換成無因次之電流-時間曲線後與三維空間擴散控制核成長之理論曲線的比較圖。(A)350C(B)800C(C)1200C。………………………………………52 圖30. 鍍於Ni片上的鈀鍍層之SEM照片,電沉積量為150mC。(A)(B)(C)的溫度為300C;(a)(b)(c)的溫度為800C。…………………………………………………53 圖31. 鍍於Ni片上的銀鍍層之SEM照片,電沉積量為150mC。(A)(B)(C)的溫度為1200C。……………………………………………………………………………54 圖32. 1200C下以Ni片為基材在不同電位下所得到的銀鍍層的X光繞射光譜。 (a) Ni片(b)-0.45V(c)-0.5V(d)-0.55V。……………………………………….……55 圖33. 於相同的電位(E=-0.5V)下以Ni片為基材在不同溫度下所得到的銀鍍層的X光繞射光譜。(a)Ni片(b)300C(c)800C。……………………………………………55 圖34. 曲線A.為6.5mM Au(Ⅰ)、曲線B.為25mM Pd(Ⅱ)、曲線C.為6.5mM Au(Ⅰ)及25mM Pd(Ⅱ) 的鹼性EMI-BF4融鹽(氯離子濃度為495mM)中於300C下在玻璃碳電極上的循環伏安圖。電位掃引速率為50mV/s。……………………56 圖35 於6.5mM Au(Ⅰ)及不同濃度PdCl2的鹼性EMI-BF4融鹽中以玻璃碳電極所掃引的循環伏安圖,300C,電位掃引速率為50mV/s。 (-)13.6mM(--)24mM (----)55.3mM。……………………………………………………………………59 圖36. 不同溫度下於含有6.5mMAu(Ⅰ)及24mMPdCl2的鹼性EMI-BF4融鹽中以玻璃碳電極所掃引的循環伏安圖,電位掃引速率為50mV/s。(-)300C(--)500C(----)800C(-•・-)1200C。……………….………………………59 圖37 曲線A.為6.5mM Au(Ⅰ)、曲線B.為6.5mM Au(Ⅰ)及25mM Pd(Ⅱ) 的鹼性EMI-BF4融鹽中於300C下在玻璃碳旋轉電極上的循環伏安圖。轉速為1200rpm。……………………………………………………………………….57 圖38. 含6.5mM Au(Ⅰ)及25mM Pd(Ⅱ)之鹼性EMI-BF4融鹽中在(A)300C(B)800C (C)1200C的玻璃碳電極上之chronoamperometry實驗所得到的電流-時間曲線。 (A)沉積電位=-0.55V,-0.56V,-0.57V,-0.58V,-0.59V,-0.6V(B)-0.35V,-0.36V, -0.37V,-0.38V,-0.4V,-0.41V(C)-0.3V,-0.31V。………………………………….60 圖39(A) 800C下於6.5mM Au(Ⅰ)及不同濃度Pd(Ⅱ)的鹼性EMI-BF4融鹽中以不同電流密度電沉積於Ni片上之鍍層的EDS組成及分析。(◇)12.83mM(△)24.85mM (□)54.81Mm PdCl2。……………………………61 圖39(B) 將圖35(A)的電沉積過程中取電流密度對電位作圖。(◇)12.83mM(□)24.85mM (△)54.81mM PdCl2。…………………………….61 圖40. 800C,於6.5mM Au(Ⅰ)及12.83mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電流密度電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。……………..63 圖41 800C,於6.5mM Au(Ⅰ)及24.85mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電流密度電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。………….64 圖42. 800C,於6.5mM Au(Ⅰ)及54.82mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電流密度電沉積於Ni片上,所得之SEM照片,電沉積量為50mC。………………65 圖43. 800C下於含有6.5mM Au(Ⅰ)及12.83mM PdCl2的EMI-BF4融鹽中改變電流密度電沉積於Ni片上的X光繞射光譜,電沉積量為150mC。電流密度分別為(a)0.34(b)0.56(c)1.12 mA/cm2。…………………………………………………..66 圖44(A). 800C下於不同絕對濃度下的Au(Ⅰ)/Pd(Ⅱ)的鹼性EMI-BF4融鹽中以不同電流密度電沉積於Ni片上之鍍層的EDS組成及分析。(○)6.5mM Au(Ⅰ)+12.83mM Pd(Ⅱ) (□)19.5mM Au(Ⅰ)+40.61mM Pd(Ⅱ)(△)32.44 mM Au(Ⅰ)+69.97mM Pd(Ⅱ)。…………………………………………………….67 圖44(B) 將圖40(A)的電沉積過程中取電流密度對電位作圖。(○)6.5mM Au(Ⅰ)+12.83mM Pd(Ⅱ) (□)19.5mM Au(Ⅰ)+40.61mM Pd(Ⅱ)(△)32.44mM Au(Ⅰ)+69.97Mm Pd(Ⅱ)。…………………………………………………....67 圖45. 800C,於19.46mM Au(Ⅰ)及40.61mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電流密度電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。……….. 68 圖46. 800C,於32.44mM Au(Ⅰ)及69.97mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電流密度電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。………….69 圖47. 800C下在(b)19.46mM Au(Ⅰ)及40.61mM Pd(Ⅱ)(c) 32.44mM Au(Ⅰ)及69.96Mm Pd(Ⅱ)的EMI-BF4融鹽中以相同的電流密度(j=2.72mA/cm2)電沉積於Ni片上的 X光繞射光譜,電沉積量為150mC。(a)Ni片。………………………………70 圖48(A). 6.5mM Au(Ⅰ)及24.85mM PdCl2的鹼性EMI-BF4融鹽中以不同電流密度改變溫度電沉積於Ni片上之鍍層的EDS組成及分析。(◇)300C(×)500C(△)800C(□)1200C。…………………………………….….71 圖48(B) 將圖44(A)的電沉積過程中取電流密度對電位作圖。(◇)300C(×)500C(△)800C(□)1200C。………………………………………….71 圖49. 於含有6.5mM Au(Ⅰ)及24.85mM PdCl2的EMI-BF4融鹽中以相同的電流密度(j=0.52mA/cm2)改變溫度,電沉積於Ni片上的X光繞射光譜,電沉積量為150mC。(a)Ni片溫度分別為(b)300C(c)500C(d)800C(e)1200C。……………… .72 圖50. 300C,於6.5mM Au(Ⅰ)及24.85mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電流密度電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。……………73 圖51. 500C,於6.5mM Au(Ⅰ)及24.85mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電流密度電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。…………..74 圖52. 1200C,於6.5mM Au(Ⅰ)及24.85mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電流密度電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。……… ..75 圖53. 800C,在含有鈀銀的鹼性EMI-BF4融鹽(氯離子濃度為495mM)以玻璃碳電極所掃引的循環伏安圖。電位掃引速率:50mV/s。(A)10mM PdCl2(B)16mM AgCl (C)16mM AgCl+10mM PdCl2………………………………………………… …76 圖54 800C,含有20mM AgCl+10mM PdCl2的鹼性EMI-BF4融鹽以玻璃碳電極所掃引的循環伏安圖。折返點(-)-0.8V(--)-0.46V。電位掃引速率:50mV/s。… 77 圖55 於10mM Ag(Ⅰ)及不同濃度PdCl2的鹼性EMI-BF4融鹽中以玻璃碳電極所掃引的循環伏安圖,350C,電位掃引速率為50mV/s。(-)10mM(--)20mM(----)30mM PdCl2。…………………………………………………………………………....79 圖56 於10mM Pd(Ⅱ)及不同濃度AgCl的鹼性EMI-BF4融鹽中以玻璃碳電極所掃引的循環伏安圖,350C,電位掃引速率為50mV/s。(-)10mM(--)20mM(----)30mM (-・・-)40mMAgCl。……………………………………………………………….79 圖57含有(-)10mM/10mM(--)20mM/20mM(----)50mM/50mM(-・・-)100mM/100mM的AgCl/ PdCl2鹼性EMI-BF4融鹽中以玻璃碳電極所掃引的循環伏安圖,350C,電位掃引速率為50mV/s。……………………………………………………….80 圖58不同溫度下於含有20mM AgCl及20mM PdCl2的鹼性EMI-BF4融鹽中以玻璃碳電極所掃引的循環伏安圖,電位掃引速率為50mV/s。(-)350C(--)500C(----)800C (-・・-)1200C。…………………………………………………………………..…80 圖59 350C下於10mM Ag(Ⅰ)及不同濃度PdCl2的鹼性EMI-BF4融鹽中以不同電位電沉積於Ni片上之鍍層的EDS組成及分析。 (△)10mM(□)20mM(◇)30mM PdCl2。…………………………………………………………………………….82 圖60 350C,於10mM Ag(Ⅰ)及10mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。…………………….83 圖61 350C,於10mM Ag(Ⅰ)及20mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。……………………….84 圖62 350C,於10mM Ag(Ⅰ)及30mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。……………………….85 圖63 350C下於含有10mM Ag(Ⅰ)及不同濃度PdCl2的EMI-BF4融鹽中以相同的電位(E=-0.56V)電沉積於Ni片上的X光繞射光譜,電沉積量為150mC。 (a)Ni片(b)10mM(c)20mM(d)30mM PdCl2。…………………………………….86 圖64 350C下於10mM Pd(Ⅱ)及不同濃度AgCl的鹼性EMI-BF4融鹽中以不同電位電沉積於Ni片上之鍍層的EDS組成及分析。(◇)10mM(□)20mM(△)30mM(○)40mM AgCl。………..……………………….87 圖65 350C下於含有10mM Pd(Ⅱ)及不同濃度AgCl的EMI-BF4融鹽中以相同的電位(E=-0.53V)電沉積於Ni片上的X光繞射光譜,電沉積量為150mC。(a)Ni片(b)10mM(c)20mM(d)30mM(e)40mM AgCl。………………………………..87 圖66 350C,於20mM Ag(Ⅰ)及10mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。……………………..88 圖67 350C,於30mM Ag(Ⅰ)及10mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。……………………….89 圖68 350C,於40mM Ag(Ⅰ)及10mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。……………………90 圖69 350C,於含有不同Pd(Ⅱ)/Ag(I)的絕對濃度下以不同電位電沉積於Ni片上之鍍層的EDS組成及分析。(◇)10mM Ag(I)+10mM Pd(Ⅱ) (□)20mM Ag(I)+20mM Pd(Ⅱ) (○)50mM Ag(I)+50mM Pd(Ⅱ) (△)100mM Ag(I)+100mM Pd(Ⅱ)。………………………………………………………….91 圖70 350C,於20mM Ag(Ⅰ)及20mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。…………………….92 圖71 350C,於50Mm Ag(Ⅰ)及50mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。…………………….93 圖72 350C,於100mM Ag(Ⅰ)及100mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。…………………..94 圖73 350C下在(b)10mM/10mM(c)20mM/20mM(d)50mM/50mM(e)100mM/100mM AgCl/PdCl2的EMI-BF4融鹽中以相同的電位(E=-0.56V)電沉積於Ni片上的X光繞射光譜,電沉積量為150mC。(a)Ni片。………………………………95 圖74 20mM Ag(Ⅰ)及20mM PdCl2的鹼性EMI-BF4融鹽中以不同電流密度改變溫度電沉積於Ni片上之鍍層的EDS組成及分析。 (◇)350C (□)500C(△)800C(○)1200C。………………………………………….96 圖75 500C,於20mM Ag(Ⅰ)及20mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。…………………….97 圖76 800C,於20mM Ag(Ⅰ)及20mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。………………..98 圖77 200C,於20mM Ag(Ⅰ)及20mM Pd(Ⅱ)的EMI-BF4鹼性融鹽中以不同電位電沉積於Ni片上,所得之SEM照片,電沉積量為150mC。………………..99 圖78 含有20mM Ag(Ⅰ)及20mM PdCl2的EMI-BF4融鹽中以相同電位(E=-0.5V)改變溫度,電沉積於Ni片上的X光繞射光譜,電沉積量為150mC。溫度分別為(a)Ni片(b)300C(c)500C(d)1200C。…………………………………………..100 圖79 1200C下於含有20mM Ag(Ⅰ)及20mM Pd(Ⅱ)的EMI-BF4融鹽中改變電位, 電沉積於Ni片上的X光繞射光譜,電沉積量為150mC。電位分別為 (a)Ni片(b)-0.45V(c)-0.48V(d)-0.5V(e)-0.54V。……………………………100

    [1] G. Delarue, J. Electroanal. Chem., 1, 285(1959).

    [2] J. M. Schafir and J. A. Plambeck, Can. J. Chem., 48, 2131(1970).

    [3] L. G. Boxall, H. L. Jones and R. A. Osteryoung, J. Electrochem. Soc.: Electrochemical Science and technology, 120, 223(1973).

    [4] I-W. Sun, A. G. Edwards and G. Mamantov, J. Electrochem. Soc., 140, 2733(1933).

    [5] G. R. Stafford, J. Electrochem. Soc., 141, 945(1994).

    [6] G. Mamantov, G.-S. Chen, H. Xiao, Y. Yang and E. Hondrogiannis, J. Electrochem.
    Soc.,142, 1758(1995).

    [7] D. M. Gruen and R. L. Mcbth, Pure Appl. Chem., 6 23, (1963).

    [8] J. Phillips and R. A. Osteryoung, J. Electrochem. Soc., 124, 1465(1977).

    [9]K. N. Marsh, A. D., A. C.-T. Wu, E. Tran and A. Klamt, Korean
    J. Chem. Eng.,19(3),357-362(2002).

    [10]P. Walden, Bull. Acad. Imper. Sci. (St. Petersberg) 1914, 1800.

    [11]H. L. Chum, V. R. Koch, L. L. Miller and R. A. Osteryoung, J. Am. Chem. Soc., 97, 3265 (1975).

    [12]R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi and C. L. Hussey, J. Electrochem. Soc., 126, 1644 (1979).

    [13]J. Robinson and R. A. Osteryoung, J. Am. Chem. Soc., 101, 323 (1979).

    [14]J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorg. Chem., 21, 1263 (1982).

    [15]E. I. Cooper and E. J. M. O’Sullivan, in “Proceeding of the eighth International Symposium of Molten Salts, Physical and High Temperature Materials Division Proceedings”, PV 92-16, R. J. Gale, G. Blomgren and H. Kojima, Editors, pp. 386, J. Electrochem. Soc., Pennington, NJ (1992).

    [16]J. S. Wilkes and M. J. Zaworotko, J. Chem. Soc. Chem. Commun., 965 (1992).

    [17]R. T. Carlin, H. C. De Long, J. Fuller and P. C. Trulove, J. Electrochem. Soc., 141, L73 (1994).

    [18]P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. De Souza and J. Dupont, Polyhedron, 15, 1217 (1996).

    [19]P. Bonhôte, A.-P. Dias, N. Papageorgious, K. Kalyanasundaram and M. Grätzel, Inorg. Chem., 35, 1168 (1996).

    [20]J. S. Wilkes, in “Ionic Liquids in Synthesis”, P. Wassercheid and T. Welton, Editor, P. 1, Wiley-VCH Verlag GmbH& Co. KGaA (2002).

    [21]Frank Endres,CHEMPHYSCHEM, 3, 144-154(2002).

    [22]J. Cl. Puippe and N. Ibl, Plat. Surf. Finish.,67,68(1980).

    [23]R. D. Grimm and D. Landolt, Surf. Coat. Technol.,31,151(1987).

    [24]C. K. Lai, Y. Y. Wang, and C. C. Wan, J. Electroanal. Chem.,322,267(1992).

    [25] J. S. Wilkes, Green Chemistry, 4, 73-80(2002).

    [26]M. J. Earle and K. R. Seddon, Pure Appl. Chem., 72, (7), pp. 1391-1398(2000).

    [27] Kenneth R. Seddon, J. Chem. Tech. Biotechnol., 68, 351-356(1997).

    [28]P.-Y. Chen, I-W. Sun, Electrochimica Acta 45 441-450(1999).

    [29]W. Chen, H. Ahmed and K. Nakazato, Appl. Phys. Lett. 66,3383(1995).

    [30]M. Takahasi, Y. Hayashi, J. Mizuki, K. Tamura, Tamura, T. Kondo, H. Naohara, K. Uosaki, Surface Science, 461, 213-218(2000).

    [31]Galo Cardenas T.,Rodrigo Segura D., Material Reserch Bulletin, 35, 1369-1379(2000).

    [32]Stevens, US patent 4048023, 1977.

    [33]H. Naohara, S. Ye,and K. Uosaki, J. Electroanal. Chem., 473, 2-9(1999).

    [34]S.-I. Pyun, W.-J. Lee,and T.-H. Yang, Thin Solid Films, 311, 183-189(1997).

    [35]T.-U. Nahm, R. Jung, J.-Y. Kim, W.-G. Park, and S.-J. Oh, J.-H. Park, J. W. Allen, S.-M. Chung, Y. S. Lee and C. N. Whang, PHYSICAL REVIEW B, 58, (15), 9817-9825(1998).

    [36]Y. S. Lee, Y. D. Chung, K. Y. Lim, C. N. Whang, J. H. Kim, H. J. Kang, J. J. Woo, J. of Electro. Spectroscopy and Related Phenomena, 105, 77-84(1999).

    [37]Youn-Seoung Lee, Yongseog Jeon, Y.-D. Chung, K.-Y. Lim and C.-N. Whang, J. of the Korean Physical Society, 37, 4, 451-455(2000).

    [38]S. M. Foiles, J. Vac. Sci. Technol. A5(4), 889-891(1987).

    [39]A. D. Vasilyev,and A. N. Bekrenev, Applied Surface Science, 191, 1-4(2002).

    [40]大寧貴金屬工業股份有限公司.(http://www.taling.com.tw/c index.html.)

    [41]U. Cohen, K. R. Walton, and R. Sard, J. Electrochem. Soc., 131, 11, 2489-2495(1984).

    [42]FRED I. NOBEL, IEEE TRANSACTIONS ON COMPONENTS, HYBRIDS, AND MANUFACTURING TECHNOLOGY, 8, 1, 163-172(1985).

    [43]F. I. Nobel, J. L. Martin, and M. P. Toben, Plating and Surface Finishing, 73(6), 88(1986).

    [44]J. L. Martin and M. P. Toben, METAL FINISHING, 39(1990).

    [45]M. E. Baumgartner and D. R. Gabe, Trans IMF, 78(2),79-85(2000).
    [46]B. Sturzenegger,and J. C. Puippe, Platinum Metals Review 28(3), 117-124(1987).

    [47]N. Kubota, Metal Finishing, 84(1), 55-57(1986).

    [48]D. Shou-Jiang, Y. Fikumoto, T. Hayashi, Plating and Surface Finishing, 76(7), 56-61(1989).

    [49]Ph. Hasler and Th. Allmendinger, Surface and Coatings Technology 58 (3), 179-183(1993).

    [50]Ph. Hasler and Th. Allmendinger, Surface and Coatings Technology 58 (3), 185-192(1993).

    [51]J. Shu, A. Adnot, B. P. A. Grandjean,and S. Kaliaguine., Thin Solid Films, 286, 72-79(1996).

    [52]Y. S. Cheng,and K. L. Yeung, J. of Membrane Science, 158, 127-141(1999).

    [53]C. Damle, A. Kumar, and M. Sastry, J. Phys. Chem. B, 106, 297-302(2002).

    [54]K. H. Chae, S. M. Jung, Y. S. Lee, C. N. Whang, Y. Jeon, M. Croft, D. Sills, P. H. Ansari and K. Mack, PHYSICAL REVIEW B, 53, 15, 10328-10334(1996).

    [55]C.-Y. Huang, H.-J. Chiang, J.-C. Huang and S.-R. Sheen, Nanostructured Materials, 10, (8), 1393-1400(1998).

    [56]U. Cohen, F. B. Koch,and R. Sard, J. Electrochem. Soc., 130, 10, 1987(1983).

    [57]J. R. Sanders, in “An Investigations of Transport properties and Ion Association in Room Temperature Haloaluminate Molten Salt”, Ph. D. Dissertation, The University of Mississippi (1987).

    [58]A. J. Bard and L. R. Faulkner, “Electrochemical Methods; Fundamentals and Applications”, John Wiley & Sons, New York (2001).

    [59]R. Greef, R. Peat, L. M. Peter, D. Pletcher and J. Robinson, “Instrumental Methodes in Electrochemistry”, John Wiley , New York (1985).
    [60]D. Pletcher, “A First Course in Electrode Process”, The Electrochemical Consultancy, England (1991).

    [61]G. Gunawardena, G. Hill, I Montenegro and B. Scharifker, J. Electroanal. Chem., 138, 241 (1982).

    [62]P. Allongue and E. Souteyrand, J. Electroanal. Chem., 286, 217 (1990).

    [63]G. Gunawardena, G. Hill and I. Montenegro, J. Electroanal. Chem., 138, 241 (1982).

    [64]G. Gunawardena, G. Hill and I. Montenegro and B. Scharifker, J. Electroanal. Chem., 138, 255 (1982).

    [65]G. Gunawardena, G. Hill and I. Montenego, J. Electroanal. Chem., 184, 357 (1985).

    [66] G. Gunawardena, G. Hill and I. Montenego, J. Electroanal. Chem., 184, 371 (1985).

    [67]A. Milchev, S. Stoyanov and R. Kaischev, Thin Solid Films, 22, 255 (1974).

    [68]A. Milchev and E. Vassileva, J. Electroanal. Chem., 107, 337 (1980).

    [69]G. J. Hills, D. J. Schiffrin and J. Thompson, Electrochim Acta, 19, 657 (1974).

    [70]I. Markov, Thin Solid Films, 35, 11 (1976).

    [71]I. Markov and E. Stoycheva, Thin Solid Films, 35, 21 (1976).

    [72]V. Tsakova and A. Milchev, J. Electroanal. Chem., 197, 359 (1986).

    [73]A. Milchev, V. Tsakova, T. Chierchie, K. Jüttner and W. J. Lorenz, Electrochim. Acta, 31, 971 (1986).

    [74]G. Trejo, A. F. Gil and I. González, J. Appl. Chem., 26, 1287 (1996).

    [75]K. Trejo, R. Ortega B., Y. Meas V., P. Ozil, E. Chainet and B. Nguyen, J. Electrochem. Soc., 145, 4090 (1998).

    [76]L. Legrand, A. Tranchant and R. Messina, J. Electrochem. Soc., 141, 378 (1994).

    [77]C. L. Hussey and X.-H. Xu, J. Electrochem. Soc., 138, 1886 (1991).

    [78]X.-H. Xu and C. L. Hussey, J. Electrochem. Soc., 139, 1295 (1992).

    [79]X.-H. Xu and C. L. Hussey, J. Electrochem. Soc., 139, 3103 (1992).

    [80]X.-H. Xu and C. L. Hussey, J. Electrochem. Soc., 140, 618 (1993).

    [81]X.-H. Xu and C. L. Hussey, J. Electrochem. Soc., 140, 1226 (1993).

    [82]W. R. Pitner and C. L. Hussey, J. Electrochem. Soc., 144, 3095 (1997).

    [83]J. S.-Y. Liu and I-W. Sun, J. Electrochem. Soc., 144, 140 (1997).

    [84]Y.-F. Lin and I-W. Sun, J. Electrochem. Soc., 146, 1054 (1999).

    [85]M. Avrami, J. Chem. Phys., 7, 1103 (1939).

    [86]B. R. Scharifker and G. Hills, Electrochim. Acta, 28, 879 (1983).

    [87]H. C. De Long, J. S.Wilkes, and R. T. Carlin, J. Electrochem. Soc., 141, 1000(1994).

    [88]P.-Y. Chen, M.-C. Lin, and I.-W. Sun, J. Electrochem. Soc., 147(9), 3350-3355(2000).

    [89] Y.-F. Lin and I-W. Sun, Electrochim. Acta, 44, 2771(1999).

    [90]Y. K., S. Dan, T. Miura, and T. Kishi, J. Electrochem. Soc., 148 (2) C102-C105(2001).

    下載圖示 校內:2004-07-10公開
    校外:2004-07-10公開
    QR CODE