| 研究生: |
林國煌 Lin, Kuo-Huang |
|---|---|
| 論文名稱: |
灰模型最佳化研究與灰預測模糊控制器之實現 The Study on the Optimization of Grey Model and the Implementation of Grey Prediction Fuzzy Controller |
| 指導教授: |
劉濱達
Liu, Bin-Da |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 最佳化 、灰模型 、灰預測模糊控制器 、灰色系統 |
| 外文關鍵詞: | optimization, grey model, grey systems, grey prediction fuzzy controller |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
灰色系統理論其應用範圍極廣,主要能對事物的數據不完整性與不確定性,進行關於系統的灰模型、灰預測、灰關聯分析與灰決策等。尤其是,灰模型更是灰色系統理論的核心,因此,灰模型參數值的修正與最佳化,就成為灰色系統理論的主要課題。另一方面,在灰模型的應用,研究的範疇均著重在灰模型輸出的補償,而其實現方式亦以軟體為主。事實上,在即時系統中,最關鍵的因素是系統反應時間的不一致,所以,以硬體電路實現灰模型,將是設計灰控制系統的重點。
本論文針對灰模型研究領域,提供四項貢獻:
(1) 提出以灰模型為主的二階多項式迴歸模式,藉以修正與擴展灰模型的應用,實驗顯示,此修正的迴歸模型,在儀器的校正週期預測上,獲得更準確的結果。
(2) 利用導引進化模擬退火法以獲取灰模型最佳參數值,進而將此技術應用於浮球定位控制與網路流量控制。由實驗結果,此最佳化模式,確實可以改善灰模型之準確度,且能成功應用於實際的灰預測控制系統。
(3) 利用複雜式可規畫邏輯元件的架構,研製一個整合灰預測模組與模糊推論機之硬體電路架構,使用者只要變更知識庫的內容,就能夠實現所需控制策略的灰色預測模糊控制晶片。此硬體電路之設計與實作流程之規畫,在技術上不但可以實現灰預測模糊知識庫的線上調整與學習,在應用上亦可大幅降低在研發過程的設計成本與時程。另外,亦利用浮球定位控制系統,驗證本系統的設計流程與實際應用效能。
(4) 基於高效率的平均值比較方式,提出高速度、多晶片特性的電壓式 WTA/MAX 電路,此設計電路適用於超大型積體電路的實作,且適合以嵌入式之應用,例如模糊控制器的 MAX/MIN 模組電路。
The theory of grey systems can deal with incomplete and uncertain problems by using the technologies such as grey model, grey prediction, grey relational analysis, and grey decision. Especially, the grey model occupies a very important position in the theory of grey system. Thus, to modify or optimize the parameter values of grey model, is the main subject in grey systems theory. Otherwise, in grey model applications, the research all put their emphases on determining the quantity of compensation for the output from grey model and implemented it by using software on a common purpose computer. In fact, the most critical factor in a real time system is the inconsistent response time of the system. Therefore, having the grey model running in hardware is the core of designing grey-based control system.
In this dissertation, we contribute four key points in the field of grey model:
(1) Propose a grey-based two-order polynomial model to modify and extend the applications of grey model. Results demonstrate that the modified autoregressive model provide more accuracy method for forecasting the calibration interval of a measuring instrument.
(2) By using the guided evolutionary simulated annealing (GESA) technique to search for the optimized parameter values of grey model. The applications of the technique for the ball-suspension control and network traffic congestion control are demonstrated. The results indicate that the GESA method can improve the prediction accuracy of grey model and can be applied to the scheme of grey prediction control system.
(3) Based on complex programmable logic device (CPLD) architecture, we propose the hardware circuits of grey prediction model and fuzzy inference engine, and provide a friendly implementation flow for users to create an application specific grey prediction fuzzy controller (GPFC) by only updating the fuzzy knowledge base. The hardware implementation flow not only provide the on-line simulation and tuning for fuzzy knowledge base, but also can rapidly and effectively provide complete design automation for GPFC. Otherwise, the validity of this implementation flow is tested by applying it to a ball-suspension control system.
(4) Based on the efficient averaged-value comparison approach, we present a voltage-mode WTA/MAX circuit that achieves high-speed and multi-chip features. This circuit is appropriate for VLSI implementation and suitable to be embedded in WTA/MAX applications such as the MAX/MIN building block of fuzzy controller.
[1] J. L. Deng, “Control problems of grey system,” Syst. & Contr. Lett., vol. 1, no. 5, pp. 288-294, Sep. 1982.
[2] S. F. Liu and L. Yang, Collected Papers on Grey Systems, Kaifeng, China: Press of Henan University, 1993.
[3] S. F. Liu and Y. Lin, An Introduction to Grey Systems, PA, USA: IIGSS Academic Publisher, 1998.
[4] B. Cheng, “The grey control on industrial process,” Huangshi College J., vol. 1, pp. 11-23, Jan. 1986.
[5] S. J. Huang and C. L. Huang, “Control of an inverted pendulum using grey prediction model,” in IEEE Conf. Ind. Applicat., vol. 3, Denver, CO, Oct. 1994, pp. 1936-1941.
[6] S. J. Huang and C. F. Hu, “Predictive fuzzy controller for robotic motion control,” in IEEE Conf. Ind. Applicat., vol. 2, Orlando, FL, Oct. 1995, pp. 1668-1672.
[7] Y. P. Huang and S. F. Wang, “Identifying the fuzzy grey prediction model by genetic algorithms,” in Proc. IEEE Int. Conf. Evolutionary Comput., Nagoya, Japan, May 1996, pp. 720-725.
[8] C. C. Wong and C. C. Chen, “Design of fuzzy control system with a switching grey prediction,” in Proc. IEEE Int. Conf. Fuzzy Syst., vol. 1, Anchorage, AK, May 1998, pp. 567-571.
[9] K. H. Lin and B. D. Liu, “Design of predictive fuzzy control system using GESA-based grey predictor,” J. Chinese Institute of Electrical Eng., vol. 10, no 2, pp. 145-154, July 2002.
[10] D. L. Hung, “Dedicated digital fuzzy hardware,” IEEE Micro, pp. 31-39, Aug. 1995.
[11] M. A. Manzoul and D. Jayabharathi, “FPGA for fuzzy controllers,” IEEE Trans. Syst., Man, Cybern., vol. 25, no. 1, pp. 213-216, Jan. 1995.
[12] G. Aranguren, M. Barron, J. L. Arroyabe, and G. Garcia-Carreira, “A pipe-line fuzzy controller in FPGA,” in Proc. 6th IEEE Int. Conf. Fuzzy Syst., Barcelona, Spain, July 1997, vol. 2, pp. 635-640.
[13] B. D. Liu, and C. Y. Huang, “Design and implementation of the tree-based fuzzy logic controller,” IEEE Trans. Syst., Man, Cybern., vol. 27, no. 3, pp. 475-487, June 1997.
[14] K. H. Lin and B. D. Liu, “An integrated development environment for the design and implementation of grey prediction fuzzy controller,” Int. J. Fuzzy Syst., vol. 5, no 3, pp. 171-177, Sept. 2003.
[15] J. L. Deng, “Application of grey system theory in China,” in Proc. Uncertainty Modeling and Analysis Symp., 1990, pp. 285-291.
[16] J. L. Deng, “Introduction to grey system theory,” J. Grey Syst., vol. 1, no. 1, pp. 1-24, 1989.
[17] J. L. Deng, “Five kinds of grey forecasting,” Fuzzy Math., vol. 2, pp. 33-42, 1985.
[18] P. P. C. Yip, “A guided evolutionary simulated annealing approach to the quadratic assignment problem,” IEEE Trans. Syst., Man, Cybern., vol. 24, no. 9, pp. 1383-1387, Sept. 1994.
[19] NCSL, Establishment and adjustment of calibration intervals, Nat. Conf. Standards Labs., Tech. Rep. RP1, 1989.
[20] A. S. Morris, Measurement & Calibration for Quality Assurance, Englewood Cliffs, NJ: Prentice-Hall, 1991.
[21] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1994.
[22] C. R. Rao, Linear Statistical Inference and Its Application, 2nd ed, New York: John Wiley & Sons, 1973.
[23] B. E. Stuckman, C. D. Perttunen, J. S. Usher, and B. A. Mclaughlin, “Stochastic modeling of calibration drift in electrical meters,” in Proc. Uncertainty Modeling and Analysis Symp., 1990, pp. 530-536.
[24] A. Bobbio, P. Tavella, A. Montefusco, and S. Costamagna, “Monitoring the calibration status of a measuring instrument by a stochastic model,” IEEE Trans. Instru. Meas., vol. 46, no. 4, pp. 747-751, Aug. 1997.
[25] X. G. Long, H. Y. Li, and F. G. Jia, “Analysis and envelope grey prediction in fruits and forest yields,” J. Grey Syst., vol. 5, no. 2, pp. 163-170, 1993.
[26] S. R. Wei, and Y. F. Xie, “Grey prediction for modifiable diseases,” J. Grey Syst., vol. 6, no. 1, pp. 59-68, 1994.
[27] F. Y. Xu, “Grey prediction and assessment for the geological structure in coal mine,” J. Grey Syst., vol. 6, no. 1, pp. 239-256, 1994.
[28] Y. S. Zhao, Z. J. Luo, and R. M. Liu, “Grey prediction of accident injury and death rate,” J. Grey Syst., vol. 9, no. 1, pp. 89-93, 1997.
[29] C. C. Wong, W. C. Liang, H. M. Feng, and D. A. Chiang, “Grey prediction controller design,” J. Grey Syst., vol. 3, no. 3, pp. 163-170, 1991.
[30] Y. P. Huang and T. M. Yu, “The hybrid grey-based models for temperature prediction,” IEEE Trans. Syst., Man, Cybern., vol. 27, no. 2, pp. 284-292, Apr. 1997.
[31] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, Reading, MA: Addison-Wesley, 1989.
[32] M. J. Maron, Numerical Analysis, New York: Macmillan, 1982.
[33] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman, Applied Linear Statistical Models, McGraw-Hill, 1996.
[34] V. Frost and B. Melamed, “Traffic modeling for telecommunications networks,” IEEE Commun. Mag., pp. 70-81, Mar. 1994.
[35] A. Adas, “Traffic models in broadband networks,” IEEE Commun. Mag., pp. 82-89, July 1997.
[36] W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, “On the self-similar nature of Ethernet traffic (extended version),” IEEE/ACM Trans. Networking, vol. 2, no. 1, pp.1-15, Feb. 1994.
[37] C. Shim, I. Ryoo, J. Lee, and S.B. Lee, “Modeling and call admission control algorithm of variable bit rate video in ATM networks,” IEEE JSAC, vol. 12, no. 2, pp. 332-344, Feb. 1994.
[38] B. Bensaou, S. T. C. Lam, H. W. Chu and D. H. K. Tsang, “Estimation of the cell loss ratio in ATM networks with a fuzzy system and application to measurement-based call admission control,” IEEE/ACM Trans. Networking, vol. 5, no. 4, pp. 572-584, Aug. 1997.
[39] H. Fowler and W. Leland, “Local area network traffic characteristics, with implications for broadband network congestion management,” IEEE J. Select Area Commun., vol. 9, no. 9, pp. 1139-1149, Sep. 1991.
[40] D. M. Chiu and R. Jain, “Analysis of increase and decrease algorithms for congestion avoidance in computer networks,” Comput. Networks ISDN Syst., vol. 17, no. 1, pp. 1-14, June 1989.
[41] R. Dighe, C. J. May and G. Ramamurthy, “Congestion avoidance strategies in broadband packet networks,” INFOCOM’91, 1991, pp. 295-303.
[42] D. P. Heyman and T. V. Lakshman, “Source models for VBR broadcast-video traffic,” IEEE/ACM Trans. Networking, vol. 4, no. 1, pp. 40-48, Feb. 1996.
[43] K. K. Leung, W. A. Massey and W. Whitt, “Traffic models for wireless communication networks,” IEEE JSAC, vol. 12, no. 8, pp. 1353-1364, Oct. 1994.
[44] L. Ott, An Introduction of Statistical Methods and Data Analysis, Third edition, Boston, PWS-Kent Publishing Company, 1990.
[45] N. Akar and E. Arikan, “Markov modulated periodic arrival process offered to an ATM multiplexer,” Performance Evaluation, vol. 22, pp. 175-190, 1995.
[46] W. M. Lam and G. W. Wornell, “Multiscale representation and estimation of fractal point processes,” IEEE Trans. Signal Processing, vol. 43, No. 11, pp. 2606-2617, Nov. 1995.
[47] J. Beran, “A goodness-of-fit test for time series with long range dependence,” J. Royal Statistical Soc. B, vol. 54, no. 3, pp. 749-760, 1992.
[48] M. Schwartz, Broadband Integrated Networks, Upper Saddle River, New Jersey, Prentice Hall Inc., 1996.
[49] Z. Fan and P. Mars, “Access flow control scheme for ATM networks using neural-network based traffic prediction,” IEE Proc. Commun., vol. 144, no. 5, pp. 295-300, 1997.
[50] C. C. Lee, “Fuzzy Logic Control Systems: Fuzzy Logical Controller-Part I,” IEEE Trans. Syst., Man, Cybern., Vol. 20, No. 2, pp. 404-418, Mar. 1990.
[51] The MathWorks Inc., Fuzzy Logic Toolbox User’s Guide, July 2002.
[52] L. A. Zadeh, “Fuzzy sets,” Inf. and Cont., vol. 8, pp. 338-353, 1965.
[53] B. Q. Li, “Three-data modeling of grey system theory,” J. Grey Syst., vol. 2, no. 1, pp. 21-31, Jan. 1990.
[54] Intelligent Control Technology Co., FCDE User Manual, Taipei, Taiwan, 1994.
[55] D. Galan, C. J. Jimenez, A. Barriga, and S. S. Sanchez-Solano, “VHDL Package for Description of Fuzzy Logic Controllers,” in Proc. EURO-DAC, Brighton, UK, Sept. 1995, pp. 528-533.
[56] C. Jian, and M. J. Patyra, “VHDL Modeling of a Multivariable Fuzzy Logic Controller Hardware System,” in Proc. IEEE 3rd Int. Conf. Fuzzy Syst., Orlando, FL, June 1994,pp.129-132,.
[57] V. Salapura, and V. Hamann, “Implementing Fuzzy Control Systems Using VHDL and Statecharts,” in Proc. EURO-DAC, Geneva, Switzerland, Sept. 1996, pp. 53-58.
[58] S. Haykin, Neural Networks: A comprehensive foundation, IEEE Press, New York, 1994.
[59] J. F. Yang, C. M. Chen, W. C. Wang, and J. Y. Lee, “A general mean-based iterative winner-take-all neural network,” Neural Net., vol. 6, no. 1 , pp. 14-24, Jan. 1995.
[60] J. C. Bezdec and S. K. Pal, Fuzzy models for pattern recognition, IEEE Press, New York, 1992.
[61] C. Y. Huang and B. D. Liu, “Current-mode multiple input maximum circuit for fuzzy logic controllers,” Electron. Lett., vol. 30, no. 23, pp. 1924-1925, Nov. 1994.
[62] D. Grant, J. Taylor, and P. Houselander, “Design, implementation and evaluation of a high-speed integrated hamming neural classifier,” IEEE J. Solid-State Circuits, vol.29, no. 9, pp. 1154-1157, Sept. 1994.
[63] W. C. Fang, B. J. Sheu, O. T. C. Chen, and J. Choi, “A VLSI neural processor for image compression using self-organization networks,” IEEE Trans. Neural Networks, , vol. 3, no. 3, pp. 506-517, May 1992.
[64] G. Gauwenberghs and V. pedroni, “A low-power CMOS analog vector quantizer,” IEEE J. Solid-State Circuits, vol. 32, no. 8, pp. 1278-1283, Aug. 1997.
[65] L. G. Johnson and S. M. S. Jalaleddine “MOS implementation of winner-take-all network with application to content-addressable memory,” Electron. Lett., vol. 27, no. 11, pp. 957-958, May 1991.
[66] J. Ghoi and B. J. Sheu, “A high-precision VLSI winner-take-all circuit for self-organization neural networks,” IEEE J. Solid-State Circuits, vol. 28, no. 5, pp. 576-584, May 1993.
[67] U. Cilingiroglu, “A charge-based neural hamming classifier,” IEEE J. Solid-State Circuits, vol. 28, no. 1 , pp. 59-67, Jan. 1993.
[68] Y. He, U. Cilingiroglu, and E. Sanchez-Sinencio, “A high-density and low-power charge-based hamming network,” IEEE Trans. VLSI Syst., vol. 1, no. 1, pp. 56-62, March 1993.
[69] Y. He and U. Cilingiroglu, “A charge-based on-chip adaptation kohonen neural network,” IEEE Trans. Neural Networks, vol. 4, no. 3, pp. 462-469, May 1993.
[70] D. Y. Aksιn, “A high-precision high-resolution WTA-MAX circuit of O(N) complexity,” IEEE Trans. Circuits Syst. -II, vol. 49, no. 1, pp. 48-53, Jan. 2002.
[71] T. Serrano-Gotarredona and B. Linares-Barranco, “A high-precision current-mode WTA-MAX with multichip capability,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 280-286, Feb. 1998.
[72] A. Demosthenous, S. Smedley, and J. Taylor, “A CMOS analog winner-take-all network for large-scale applications,” IEEE Trans. Circuits Syst. -I, vol. 45, no. 3, pp. 300-304, March 1998.